A Microbial D-Hydantoinase is Stabilized and Overexpressed as a Catalytically Active Dimer by Truncation and Insertion of the C-Terminal Region

  • KIM, GEUN-JOONG (Department of Molecular Science and Technology, College of Engineering, Ajou University) ;
  • HAK-SUNG KIM (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2002.04.01

Abstract

Previously, it was reported that the nonhomologous C-terminal regions of the D-hydantoinases are nonessential for catalysis, but affect the oligomeric structure of the enzyme [3]. In an effort to further confirm the above observation, the C-terminal region-inserted enzyme was constructed by attaching a peptide (22 residues) at the C-terminal of the D-hydantoinase from Bacillus thermocatenulatus GH2, and its structural and biochemical properties were compared with both the wild-type and C-terminal region-truncated enzymes. As a result, native tetrameric D-hydantoinase was dimerized as the truncated enzyme, and the inserted mutant with a new sequence was expressed as a catalytically active form in E. coli. Expression level of the inserted and truncated enzymes were found to be significantly increased compared to the level of the wild-type enzyme, and this appears to be due to the reduced toxic effect of the mutant enzymes on host cells. Dimerized enzymes exhibited increased thermo- and pH stabilities considerably when compared with the corresponding wild-type enzyme. Comparison of the substrate specificity between the mutant and wild-type enzymes suggests that the substrate specificity of the D-hydantoinase is closely linked with the oligomeric structure.

Keywords

References

  1. Chien, H. R., Y. L. Jih, W. Y. Yang, and W. H. Wh. 1998. Identification of the open reading frame for the Pseudomonas putida D-hydantoinase gene and expression of the gene in Escherichia coli. Biochim. Biophys. Acta 1395: 68-77
  2. Hendsch, Z. S., T. Jonsson, R. T. Sauer, and B. Tidor. 1996. Protein stabilization by removal of unsatisfied polar groups: Computational approaches and experimental tests. Biochemistry 35: 7621-7625
  3. Kim, G. J. and H. S. Kim. 1998. C-Terminal regions of Dhydantoinases are nonessential for catalysis, but affect the oligomeric structure. Biochem. Biophys. Res. Commun. 243: 96-100 https://doi.org/10.1006/bbrc.1997.8037
  4. Kim, G. J. and H. S. Kim. 1998. Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring. Biochem. J. 330: 295-302
  5. Kim, G. J., D. E. Lee, and H. S. Kim. 2000. Functional expression and characterization of the two cyclic amidohydrolase enzymes, allantoinase and a novel phenylhydantoinase, from E. coli. J. Bacteriol. 182: 7021-7028
  6. Kim, G. J., J. H. Park, D. C. Lee, and H. S. Kim. 1998. Engineering the thermostable D-hydantoinase from two thermophilic Bacilli based on their primary structure. Ann. N.Y. Acad. Sci. 864: 332-336
  7. Kim, G. J., J. H. Park, D. C. Lee, H. S. Ro, and H. S. Kim. 1997. Primary structure, sequence analysis, and expression of the thermostable D-hydantoinase from Bacillus stearothermophilus SD1. Mol. Gen. Genet. 255: 152-156
  8. Kim, G. J., S. G. Lee, J. H. Park, and H. S. Kim. 1997. Direct detection of the hydantoinase activity on solid agar plates and electrophoretic acrylamide gels. Biotechnol. Tech. 11: 511-513
  9. Kim, M. H., H. K. Kim, B. C. Oh, and T. K. Oh. 2000. Substitution of glycine 275 by glutamate (G275E) in lipase of Bacillus stearothermophilus affects its catalytic activity and enantio- and chain length specificity. J. Microbiol. Biotechnol. 10: 764-769
  10. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  11. Lapointe, G., S. Viau, D. Leblanc, N. Robert, and A. Morin. 1994. Cloning, sequencing, and expression in Escherichia coli of the D-hydantoinase gene from Pseudomonas putida and distribution of homologous genes in other microorganisms. Appl. Environ. Microbiol. 60: 888-895
  12. Lee, S. G., D. C. Lee, S. P. Hong, M. H. Sung, and H. S. Kim. 1995. Thermostable D-hydantoinase from thermophilic Bacillus stearothermophilus SD-1: Characteristics of purified enzyme. Appl. Microbiol. Biotechnol. 43: 270-276
  13. Morin, A., W. Hummer, H. Schutte, and M. R. Kula. 1986. Characterization of hydantoinase from Pseudomonas fluorescens DSM84. Biotechnol. Appl. Biochem. 8: 564-574
  14. Mukohara, Y., T. Ishikawa, K. Watabe, and H. Nakamura. 1994. A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: Cloning, sequencing, and high expression of the enzyme gene, and some properties of the expressed enzyme. Biosci. Biotech. Biochem. 58: 1621-1626
  15. Oh, K. H., G. J. Kim, J. H. Park, and H. S. Kim. 2001. Structural and functional importance of two glutamate residues, Glu47 and Glu146, conserved in N-carbamyl Damino acid amidohydrolases. J. Microbiol. Biotechnol. 11: 29-34
  16. Park, J. H., G. J. Kim, S. G. Lee, D. C. Lee, and H. S. Kim. 1999. Purification and characterization of thermostable Dhydantoinase from Bacillus thermocatenulatus GH-2. Appl. Biochem. Biotech. 81: 53-65
  17. Runser, S. M. and P. C. Meyer. 1993. Purification and biochemical characterization of the hydantoin hydrolyzing enzyme from Agrobacterium species: A hydantoinase with no 5,6-dihydropyrimidine amidohydrolase activity. Eur. J. Biochem. 213: 1315-1324
  18. Sharma, R. and R. M. Vohra. 1997. A thermostable Dhydantoinase isolated from a mesophilic Bacillus sp. AR9. Biochem. Biophys. Res. Commun. 234: 485-488
  19. Suzuki, T., K. Igarashi, K. Hase, and K. Tuzimura. 1973. Optical rotatory dispersion and circular dichroism of amino acid hydantoin. Agri. Biol. Chem. 37: 411-416
  20. Syldatk, C., A. Laufer, R. Muller, and H. Hoke. 1990. Production of optically pure D- and L-a-amino acids by bioconversion of D,L-5-mono substituted hydantoin derivatives. Adv. Biochem. Eng./Biotechnol. 41: 29-75
  21. Takahashi, S., Y. Kii, H. Kumagai, and H. Yamada. 1978. Purification, crystallization and properties of hydantoinase from Pseudomonas striata. J. Ferment. Technol. 56: 492- 498
  22. Waldburger, C. D., J. F. Schildbach, and R. T. Sauer. 1995. Are buried salt bridges important for protein stability and conformational specificity? Nat. Struct. Biol. 2: 122-128.
  23. Yamada, H., S. Takahashi, Y. Kii, and H. Kumagai. 1978. Distribution of hydantoin hydrolyzing activity in microorganisms. J. Ferment. Technol. 56: 484-491