Molecular Identification of Predominant Bifidobacterium Strains Isolated from Korean Feces

  • So, Jae-Seong (Department of Biological Engineering and the Center for Advanced Bioseparation Technology, Inha University) ;
  • Lee, Ki-Yong (Department of Biological Engineering and the Center for Advanced Bioseparation Technology, Inha University) ;
  • Soo, Jea-Kal (Department of Biological Engineering and the Center for Advanced Bioseparation Technology, Inha University) ;
  • Heo, Tae-Ryeon (Department of Biological Engineering and the Center for Advanced Bioseparation Technology, Inha University) ;
  • Kim, Seung-Cheol (Department of Obstetrics and Gynecology, College of Medicine, Ehwa Womans University)
  • Published : 2002.02.01

Abstract

In order to isolate and identify Bifidobacterium spp. that originated in Korea, feces were sampled from healthy Korean adults and children living in three villages, the first having a history of longevity and the other two where the diet did not include fermented milk or any pharmaceutical preparations. Through the use of Gram staining and microscopic examination for cell morphology, 23 bacterial strains presumed to be the Bifidobacterium genus were isolated from the feces of 13 out of a total of 59 Korean people. To identify the Bifidobacterium strains at the genus level, these bacteria were then analyzed by TLC and the fructose-6-phosphate phosphoketolase (F6PPK) test. The result showed that 22 of the isolated strains were confirmed to be members of the genus Bifidobacterium. All of these bifidobacteria were also identified as Bifidobacterium spp. by the fermentation test. Using a RFLP analysis, an attempt was made to identify the Bifidobacterium spp. that had been isolated from both Korean adults and children. In a genomic Southern blot analysis after digestion with two restriction enzymes (EcoRI, HindIII), all of the 14 randomly selected Korean isolates showed patterns identical to those of three different B. longum species. Another restriction enzyme, CfoI (4-bp recognition enzyme), was then used to identify the strain. Interestingly, all the Korean isolates were identified as B. longum ATCC 15708, indicating that a RFLP analysis was effective for identifying Bifidobacterium spp. at both the strain and species levels.

Keywords

References

  1. Int. J. Syst. Bacteriol. v.43 Phenotypic and genomic analyses of human strains belonging or related to Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium breve Bahaka, D.;C. Neut;A. Khattabi;D. Monget;F. Gavini https://doi.org/10.1099/00207713-43-3-565
  2. J. Clin. Microbiol. v.8 Rapid identification of non-fermentative gram-negative rods by the Corning N/F system Barnishan, J.;L. W. Ayers
  3. Int. J. Syst. Bacteriol. v.41 Bifidobacterium ruminantium sp. Nov. and Bifidobacterium merycicum sp. Nov. from the rurnens of cattle Biavati, B.;P. Mattarelli https://doi.org/10.1099/00207713-41-1-163
  4. Int. J. Syst. Bacteriol. v.32 Electrophoretic patterns of proteins in the genus Bifidobacterium and proposal of four new species Biavati, B.;V. Scardovi;W. E. C. Moore https://doi.org/10.1099/00207713-32-3-358
  5. J. Microbiol. Biotechnol. v.8 False positive SOD activity of Bifidobacterium spp. grown in MRS medium Chang, W.-S.;J.-S. So
  6. Appl. Environ. Microbiol. v.61 Application of ribotyping for differentiation of Vibrio cholerae Non-O1 isolated from shrimp farms in Thailand Dalsgaard, A.;P. Echeverria;J. L. Larsen;R. Siebeling;O. Serichantalergs;H. H. Huss
  7. Biochem. Biophys. Acta v.136 Carbohydrate metabolism in Bifidobacterium bifidum De Vries, W.;S. H. Gerbrandy;A. H. Stouthamer https://doi.org/10.1016/0304-4165(67)90001-3
  8. J. Clinical Microbiol. v.33 Genomic and proteinic characterization of strain S, a Rickettsia isolated from Rhipicephalus sanguineus ticks in Armenia Eremeeva, M.;N. Balayeva;V. Roux;V. Ignatovich;M. Kotsinjan;D. Raoult
  9. Bacterial Metabolism(2nd ed.) Gottschalk, G.
  10. Food Technol. v.45 Bifidobacteria: Their potential for use in American dairy products Hughes, D. B.;D. G. Hoover
  11. Korean J. Biotechnol. Bioeng. v.15 A rapid small scale method for extraction of genomic DNA from Lactobacillus spp. Lee, S.-Y.;C.-E. Chang;S.-C. Kim;H.-S. Yun;J.-S. So
  12. Appl. Environ. Microbiol. v.60 Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes Laguerre, G.;M. R. Allard;F. Revoy;N. Amarger
  13. J. Microbiol. Methods v.45 Thin layer chromatographic determination of organic acids for rapid identification of bifidobacteria at genus level Lee, K. Y.;J.-S. So;T. R. Heo https://doi.org/10.1016/S0167-7012(01)00214-7
  14. Appl. Environ. Microbiol. v.60 Identification of Bifidobacterium strains by rRNA gene restriction patterns Mangin, I.;N. Bourget;Y. Bouhnik;N. Bisetti;J. M. Simonet;B. Decaris
  15. Biochemistry and Physiology of Bifidobacteria Bifidobacteria in clinical microbiology and medicine Miller-Catchpole, R.;Bezkorovainy A(ed.);Miller-Catchpole R.(ed.)
  16. Intestinal Bacteria and Health Mitsuoka, T.
  17. Bifidobacteriol. Microflora v.3 Taxonomy and ecology of bifidobacteria Mitsuoka, T.
  18. Proceedings of the 5th International Symposium on Microbial Ecology Taxonomy and ecology of the indigenous intestinal bacteria Mitsuoka, T.
  19. J. Industr. Microbiol. v.6 Bifidobacteria and their role in human health Mituoka, T. https://doi.org/10.1007/BF01575871
  20. Can. Inst. Food Sci. Technol. J. v.23 Bifidobacteria and bifidogenic factors Modler, H. W.;R. C. Mckellar;M. Yaguchi https://doi.org/10.1016/S0315-5463(90)70197-6
  21. Med. Microbiol. Immunol. v.163 Evaluation of two test kits-API and Oxi Ferm thbe- for identification of oxidative-fermentative gram-negative rods Nord, C. E.;N. Wretlind;A. Dahlback https://doi.org/10.1007/BF02121824
  22. J. Microbiol. Biotechnol. v.8 Quantitative counting of Bifidobacterium spp. in a sample mixed with Lactobacillus acidophilus Park, Y.-M.;J.-S. So
  23. Modern Bacterial Taxonomy(2nd edition) Priest, F.;B. Austin
  24. Experientia Suppl. Bifidobacteria and their role. Microbiological, nutritional, physiological, medical and technological aspects and bibliography Rasic, J. L.;J. A. Kurmann
  25. Appl. Environ. Microbiol. v.58 A Lactobacillus helveticus-specific DNA probe detects restriction fragment length polymorphisms in this species Reyes-Cavilan C. G.;G. K. Y. Limsowtin;P. Tailliez;L. Sechaud;J. Accolas
  26. A Laboratory Manual Molecular Cloning Sambrook, J.;E. F. Fritsch;T. Maniatis
  27. Bergey's Manual of Systematic Bacteriology v.2 Genus Bifidobacterium Scardovi, V.;P. H. A. Sneath(ed.);N. S. Mair(ed.);M. E. Sharpe(ed.);J. G. Holt(ed.)
  28. Int. J. Syst. Bacteriol. v.24 Bifidobacterium animalis (Mitsuoka) comb. nov. and the minimum and subtile groups of new bifidobacteria found in sewage Scardovi, V.;L. D. Trovatelli https://doi.org/10.1099/00207713-24-1-21
  29. J. Bacteriol. v.106 Starch gel electrophoresis of fructose-6-phosphate phosphoketolase in the genus Bifidobacterium Scardovi, V.;B. Sgorbati;G. Zani
  30. Int. J. Syst. Bacteriol. v.21 Deoxyribonucleic acid homology relationships among species of the genus Bifidobacterium Scardovi, V.;L. D. Trovatelli;G. Zani;F. Crociani;D. Mateuzzi https://doi.org/10.1099/00207713-21-4-276
  31. J. Dairy Res. v.55 Fermented milks and future trends. Part Ⅱ. Technological aspects Tamine, A. Y.;R. K. Robinson https://doi.org/10.1017/S002202990002611X
  32. J. Bacteriol. v.173 16S Ribosomal DNA amplification for phylogenetic study Weisburg, W. G.;S. M. Barns;D. A. Pelletier;D. J. Lane https://doi.org/10.1128/jb.173.2.697-703.1991
  33. Syst. Appl. Microbiol. v.14 Differential characteristics of Bifidobacterium longum and Bifidobacterium animalis Yaeshima, T.;T. Fujisawa;T. Mitsuoka https://doi.org/10.1016/S0723-2020(11)80297-3