Molecular Cloning of the nahC Gene Encoding 1,2-Dihydroxynaphthalene Dioxygenase from Pseudomonas fluorescens

  • KIM, YEO-JUNG (Department of Biological Science, Sookmyung Women′s University) ;
  • NA-RI LEE (Department of Biological Science, Sookmyung Women′s University) ;
  • SOON-YOUNG CHOI (Division of Molecular Biology, Ewha Women′s University) ;
  • KYUNG-HEE MIN (Department of Biological Science, Sookmyung Women′s University)
  • Published : 2002.02.01

Abstract

The complete nucleotide sequence of the nahC gene from Pseudomonas fluorescens, the structural gene for 1,2-dihydroxynaphthalene (1,2-DHN) dioxygenase, was determined. The 1,2-DHN dioxygenase is an extradiol ring-cleavage enzyme that cleaves the first ring of 1,2-dihydroxynaphthalene. The amino acid sequence of the dioxygenase deduced from the nucleotide sequence suggested that the holoenzyme consists of eight identical subunits with a molecular weight of approximately 34,200. The amino acid sequence of 1,2-DHN dioxygenase showed more than $90\%$ homology with those of the dioxygenases of other Pseudomonas strains. However, sequence similarity with those of the Sphingomonas species was less than $60\%$. The nahC gene of P. fluorescens was moderately expressed in E. coli NM522, as determined by enzymatic activity.

Keywords

References

  1. J. Bacteriol. v.182 Identification of an extradiol dioxygenase involved in tetralin biodegradation: gene sequence analysis and purification and characterization of the gene product Andujar, E.;M. J. Hernaez;S. R. Kaschabek;W. Reineke;E. Santero https://doi.org/10.1128/JB.182.3.789-795.2000
  2. Biochem. Biophys. Res. commun. v.72 Naphthalene metabolism by pseudomonads: The oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2-hydroxybenzalpyruvate Barnsley, E. A. https://doi.org/10.1016/S0006-291X(76)80247-1
  3. Gene v.236 Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10 Bosch, R.;E. Garcia-Valdes;E. R. Moore https://doi.org/10.1016/S0378-1119(99)00241-3
  4. J. Gen. Microbiol. v.128 The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains: Phenotypic changes correlated with structural modification of the plasmid pWW60-1 Canc, R. A.;P. A. Williams
  5. Mol. Cells v.11 Molecular cloning of the nahG gene encoding salicylate hydroxylase from Pseudomonas fluorescens Chung, Y.-S.;N. R. Lee;C. I. Cheon;E. S. Song;M. S. Lee;Y. S. Kim;K. H. Min
  6. Biochem. J. v.91 Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism Davies, J. L.;W. C. Evans https://doi.org/10.1042/bj0910251
  7. J. Bacteriol. v.175 Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: Complete DNA sequence of an upper naphthalene catabolic pathway Denome, S. A.;D. C. Stanley;E. S. Olson;K. D. Young https://doi.org/10.1128/jb.175.21.6890-6901.1993
  8. J. Bacteriol. v.174 Bacterial metabolism of naphthalene: Construction and use of recombinant bacteria to study ring cleavage of 1.2-dihydroxynaphthalene and subsequent reactions Eaton, R. W.;P. J. Chapman
  9. J. Bacteriol. v.180 A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2 Fuenmayor, S. L.;M. Wild;A. L. Boyes;P. A. Williams
  10. J. Bacteriol. v.156 Cloning of genes for naphthalene metabolism in Pseudomonas putida Grund, A. D.;I. C. Gunsalus
  11. J. Microbiol. Biotechnol. v.9 Purification and characterization of a catechol 2.3-dioxygenase which preferentially acts on 4-methylcatechol Ha, Y. M.;Y. H. Jung;D. Y. Kwon;Y. C. Kim;Y. S. Kim;C. K. Kim;K. H. Min
  12. J. Biol. Chem. v.264 Bacterial aromatic ring-cleavage enzymes are classified into two different gene families Harayama, S.;M. Rekik
  13. J. Bacteriol. v.173 Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids Kuhm, A. E.;A. Stolz;K. L. Ngal;H. J. Knackmuss
  14. J. Biol. Chem. v.193 Protein measurement with the Folin Phenol reagent Lowry, O. H.;N. J. rosebrough;A. L. Farr;R. J. Randall
  15. Biochem. Biophys. Acta v.1492 Cloning and expression of genes encoding metacleavage enzymes from 4,6-dimethyldibenzothiophene-degrading Sphingomonas strain TZS-7 Nomura, L. J.;N. Nakajima-Kambe;T. Nakahara https://doi.org/10.1016/S0167-4781(00)00115-9
  16. Molecular Cloning: A Laboratory Manual Sambrook, J.;E. F. Fiitsh;T. Maniatis
  17. J. Bacteriol. v.171 Demonstration, characterization, and mutational analysis of nahR protein binding to nah and promoters Schell, M. A.;E. F. Poser https://doi.org/10.1128/jb.171.2.837-846.1989
  18. J. Bacteriol. v.166 Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon Schell, M. A.;P. E. Wender https://doi.org/10.1128/jb.166.1.9-14.1986
  19. Biochem. Biophys. Res. Commun. v.60 The regulation of naphthalene metabolism in Pseudomonads Shamsuzzaman, K. M.;E. A. Barnsley https://doi.org/10.1016/0006-291X(74)90280-0
  20. J. Bacteriol. v.176 Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82 Takizawa, N.;N. Kaida;S. Torigoe;T. Moritani;T. Sawada;S. Satoh;H. Kiyohara https://doi.org/10.1128/jb.176.8.2444-2449.1994
  21. Genetics v.79 Plasmid gene organization: Naphthalene/salicylate oxidaton Yen K. M.;I. C. Gunsalus
  22. J. Bacteriol. v.162 Regulation of naphthalene catabolic genes of plasmid NAH7 Yen, K. M.;I. C. Gunsalus
  23. J. Microbiol. Biotechnol. v.10 Development of DNA chip microarrayer Yoon, S. H.;J. G. Choi;S. Y. Lee
  24. J. Microbiol. Biotechnol. v.10 Cation flux mediated activation of P-type ATPase in Helicobacter pylori Yun, S.-K.;M.-R. Ki;J.-K. Park;W.-J. Lim;S.-Y. Hwang