Mechanisms of Chilling Tolerance in Relation to Antioxidative Enzymes in Rice

  • Kuk, Yong-In (Biotechnology Research Institute, Chonnam National University) ;
  • Shin, Ji-San (Faculty of Applied Plant Science, Chonnam National University) ;
  • Whang, Tay-Eak (Faculty of Applied Plant Science, Chonnam National University) ;
  • Guh, Ja-Ock (Faculty of Applied Plant Science, Chonnam National University)
  • 발행 : 2002.12.01

초록

In order to examine the mechanistic basis for differential sensitivities to chilling and subsequent recovery between two rice (Oryza sativa L.) cutivars, a chilling-tolerant japonica type (Ilpumbyeo) and a chilling-susceptible indica type (Taebaekbyeo), changes of physiological responses and antioxidant enzymes were investigated. Both cultivars at 3 leaf stage were exposed at a low temperature of $5^{\circ}C$ for 3 days and subsequently recovered in a growth chamber at a $25^{\circ}C$ for 5 days with 250 mmol $m^{-2}$ $s^{-1}$. Physiological parameters such as leaf fresh weight, relative water content, cellular leakage, lipid peroxidation, and chlorophyll a fluorescence showed that the chilling tolerant cultivar had a high tolerance during chilling. However, the chilling-susceptible cultivar revealed severe chilling damages. The chilling-tolerant cultivar was also faster in recovery than the chilling-susceptible cultivar in all parameters examined. We analyzed the activity and isozyme profiles of four antioxidant enzymes which are: superoxide dismutase (SOD), caltalase (CAT), ascorbate peroxidase (APX), and glutation reductase (GR). We observed that chilling-tolerance was due to a result of the induced or higher antioxidant enzyme system, CAT and APX in leaves and SOD, CAT, APX, and GR in roots. Especially, we observed the most significant differences between the chilling-tolerant cultivar and -susceptible cultivar in CAT and APX activity. Also in isozyme profiles, CAT and APX band intensity in the chilling-tolerant cultivar was distinctively higher than in the chilling-susceptible cultivars during chilling and recovery. Thus, the cold stability of CAT and APX are expected to contribute to a tolerance mechanism of chilling in rice plants. In addition, the antioxidative enzymes activity in roots may be more important than in that of leaves to protect chilling damage on rice plants.

키워드

참고문헌

  1. Anderson, M. D., T. K. Prasad, and C. R. Stewart. 1995. Changes in isozyme profiles of catalase, Peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109 : 1247-1257 https://doi.org/10.1104/pp.109.4.1247
  2. Aono, M. A., Kubo, H. Saji, K. Tanaka, and N. Kondo. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol. 34 : 129-135
  3. Badiani, M., A. R. Paolacci, A. Fusari, R. D'Ovidio, J. G. Scandalios, E. Porceddu, and Giovannozzi-sermanni. 1997. Nonoptimal growth temperatures and antioxidants in the leaves of Sorghum bicolor (L.) Moench. II. Short-term acclimation. J. Plant Physiol. 151 : 409-421 https://doi.org/10.1016/S0176-1617(97)80005-3
  4. Basra, A. S. 2001. Crop responses and adaptations to temperature stress, in: T.K. Prasad, Mechanisms of chilling injury and tolerance, Food Products Press$\circledR$, an imprint of the Haworth Press, Inc. New York. pp. 1-34
  5. Bowler, C. M., van Montagu, and D. Inz. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. 43 : 83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Britton, L., D. P. Malinowski, and I. Fridovich. 1978. Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparison with other organisms. J. Bacteriol. 134 : 229-236
  8. Br$\^{u}$ggemarm W., V. Beyel, M. Brodka, H. Poth, M. Weil, and J. Stockhaus. 1999. Antioxidants and antioxidative enzymes in wild-type and transgenic Lycopersicon genotypes of different chillmg tolerance. Plant Sci. 140: 145-154 https://doi.org/10.1016/S0168-9452(98)00220-9
  9. Buege, J. A. and S. D. Aust. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52 : 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  10. Chen, G. X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in fheir enzymatic and molecular properdes. Plant Cell Physiol. 30 : Methods Enzymol
  11. DeDatta, S. K. 1981. The climatic environment and its effects on rice production, in S.K. De Datta (ed.) Principles and practices of rice production. John Wiley & Sons, New York. pp. 9-40
  12. Edwards, E. A., C. Enord, G. P. Creissen, and P. M. Mullineaux. 1994. Synthesis and properties of glutathione reductase in stressed peas. PIanta 192 : 137-143
  13. Fadzillah, N. M., V. Gill, R. P. Pinch, and R. H. Burdon. 1996. Chilling, oxidative stress, and antioxidant responses in shoot cultures of rice. Planta 199 : 552-556
  14. Feierabend, J. C., Schaan, and B. Herting. 1992. Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol. 100 : 1554-1561 https://doi.org/10.1104/pp.100.3.1554
  15. Foyer, C. H., M. Lelandais, C. Galap, and K. J. Kunert. 1991. Effect of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97 : 863-872 https://doi.org/10.1104/pp.97.3.863
  16. Foyer, C. H., P. Descourvi$\'e$res, and K. J. Kunert. 1994. Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell and Environment 17 : 507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  17. Fridovich, I. 1978. The biology of oxygen radicals. Science 201 : 875-880 https://doi.org/10.1126/science.210504
  18. Genty, B., J. M. Briantais, and N. R. Baker. 1989. Relationship between the quantum yield of photosynthetic electron transport and the quenching of chlorophyll fluorescence. Biochem. Biophys. Acta 990 : 87-92 https://doi.org/10.1016/S0304-4165(89)80016-9
  19. Gupta, A. S., J. L. Heinen, A. S. Holaday, J. J. Burke, and R. D. Allens. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90 : 1629-1633 https://doi.org/10.1073/pnas.90.4.1629
  20. Guy, C. L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of PIant Physiol. and Plant MoIe. Biology 41 : 187-223 https://doi.org/10.1146/annurev.pp.41.060190.001155
  21. Guy, C. L. and J. V. Carter. 1984. Characteristic of partially purified glutathione reductase from cold-hardened and nonhardened spinach leaftissue.Cryobiology. 21 : 454-464 https://doi.org/10.1016/0011-2240(84)90083-X
  22. Halliwell, B. and J. M. C. Gutteridge. 1986. Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts. Arch. Biochem. Biophys. 246 : 501-514 https://doi.org/10.1016/0003-9861(86)90305-X
  23. Hetherington, S. E., J. He, and R. M. Smilie. 1989. Photoinhibition at low temperature in chilling-sensitive and resistant plants. PIant Physiol. 90 : 1609-1615 https://doi.org/10.1104/pp.90.4.1609
  24. Hiscox, J. D., and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissues without marceration. Can. J. Bot. 57: 1332-1334 https://doi.org/10.1139/b79-163
  25. Hodges,D. M., C. J. Andrews, D.A. Johnson, and R.I. Hamilton. 1997. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. PIant. 98 : 685-692
  26. Hodgson, R. A. J., J. K. Raison. 1991. Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling induced photoinhibition. Planta 183: 222-228
  27. Howarth, C. J. and H. J. Ougham. 1993. Gene expression under temperature stress. New Phytologist 125: 1-26 https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
  28. Jahnke, L. S., M. P. Hull, and S. P. Long. 1991. Chilling stress and oxygen metabolizing enzymes in Zea diploperennis. Plant Cell Environ. 14 : 97-104 https://doi.org/10.1111/j.1365-3040.1991.tb01375.x
  29. Koscielnak, J. 1993. Effects of low night temperature on photosynthetic activity of maize seedlings (Zea mays L.). J. Agron. Crop Sci. 171 : 73-81 https://doi.org/10.1111/j.1439-037X.1993.tb00116.x
  30. Krause, G. H., T. M. Briantais, and C. Vernott. 1983. Characterization of chlorophyll fluorescence spectroscopy at 77 K. I. $\"{A}$pHdependent quenching. Biochim. Biophys. Acta 723 : 169-175 https://doi.org/10.1016/0005-2728(83)90116-0
  31. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$. Nature 227 : 680-685 https://doi.org/10.1038/227680a0
  32. Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159 : 75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
  33. Leipner, J., Y. Francheboud, and P. Stamp. 1997. Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant CeII Environ. 20 : 366-372 https://doi.org/10.1046/j.1365-3040.1997.d01-76.x
  34. Markhart, A. H. III. 1986. Chilling injury: A review of possible causes. HortScience 21 : 1329-1333
  35. McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055
  36. Michalski, W. P. and Z. Kaniuga. 1982. Photosynthetic apparatus of chilling sensitive plants: Reversibility by light of cold and dark induced inactivation of cyanide sensitive superoxide dismutase activity in tomato leaf chloroplasts. Biochem. Biophys. Acta 680: 250-257 https://doi.org/10.1016/0005-2728(82)90136-0
  37. Miedema, P. 1983. The effects oflow temperasture on Zea mays. Advances in Agronomy 35 : 93-129 https://doi.org/10.1016/S0065-2113(08)60322-3
  38. Mishra, N. P., R. K. Mishra, and G. S. Singhal. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves of strong visible light at different temperatures in the presence of protein synthesis inhibitors. PIant Physiol. 102 : 903-910 https://doi.org/10.1104/pp.102.3.903
  39. Mittler, R. and B. Zilinskas. 1993. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbatedependent reduction of nitroblue tetrazolium. Anal. Biochem. 212: 540-546 https://doi.org/10.1006/abio.1993.1366
  40. Oidaira, H., S. Satoshi, K. Tomokazu, and U. Takashi. 2000. Enhancement of antioxidant enzyme activities in chilled rice seedlings. Plant Physiol. 156 : 811-813 https://doi.org/10.1016/S0176-1617(00)80254-0
  41. Okuda, T., Y. Matsuda, A. Yamanaka, and S. Sagisaka. 1991. Abrupt increase in the level of hydrogen peroxide in leaves of wheat is caused by cold treatment. Plant Physiol. 97 : 1265-1267 https://doi.org/10.1104/pp.97.3.1265
  42. Omran, R. J. 1980. Peroxide level and the activities of catalase, peroxidase, and indolacetic acid oxidase during and after chilling cucumber seedlings, Plant PhysioI. 65 : 407-408 https://doi.org/10.1104/pp.65.2.407
  43. Pinhero, R. G., M. V. Rao, G. Paliyath, D. P. Murr, and R. A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol induced chilling tolerance of maize seedlings. Plant Physiol. 114 : 685-704
  44. Prasad, T. K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance: Changes in antioxidant system, oxidation of proteins and lipids and protease activities. Plant J. 10 : 1017-1026 https://doi.org/10.1046/j.1365-313X.1996.10061017.x
  45. Prasad, T. K. 1997. Role of catalase in inducing chilling tolerance in preemergent maize seedlings. Plant Physiol. 114 : 1319-1376
  46. Prasad, T. K., M. D. Anderson, B. A. Martin, and C. R. Stewart. 1994. Evidence for chilling induced oxidative stress in maize seedlings and a regulating role for hydrogen peroxidase. Plant Cell 6: 65-74 https://doi.org/10.1105/tpc.6.1.65
  47. Rao, M. V., G. Paliyath, and D. P. Ormrod. 1996. Ultraviolet Band ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110 : 125-136 https://doi.org/10.1104/pp.110.1.125
  48. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen scavenging enzymes in low temperature sensitive and tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109 : 105-113 https://doi.org/10.1016/0168-9452(95)04156-O
  49. Scandalios, G. J. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101 : 7-12 https://doi.org/10.1104/pp.101.1.7
  50. Scebba, F., L. Sebustiani, and C. Vitagliano. 1998. Changes in activity of antioxidant enzymes in wheat (Triticum aestivum L.) seedlings under cold acclimation. Physiol. Plant. 104 : 747-752 https://doi.org/10.1034/j.1399-3054.1998.1040433.x
  51. Shewfelt, R. L. and M. C. Erickson. 1991. Role of lipid peroxidation in the mechanism of membrane-associated disorders in edible plant tissue. Trends in Food Science Technology 2 : 152-154 https://doi.org/10.1016/0924-2244(91)90661-2
  52. Smirnoff, N. 1993. The role ofactive oxygen in the response of plants to water deficit and desiccation. New PhytoIogist 125 : 27-58 https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  53. Spychalla, J. P. and S.L. Desborogh. 1990. Superoxide dismutase, catalase, and $\'a$-tocopherol content of stored potato tubers. Plant Physiol. 94 : 1214-1218 https://doi.org/10.1104/pp.94.3.1214
  54. Stamp, P. 1984. Chilling tolerance of young plants demonstrated on the example of maize (Zea mays L.). Advances in Agronomy and Crop Science 7
  55. Terashima I., S. Funayama, K. Sonike. 1994. The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem $^2$, not photosystem $\'E$$\'E$. Planta 193 : 300-306
  56. Thomashow, M. F. 1990. Molecular genetics of cold acclimation in higher plants. Advanced Genetics 28 : 99-131 https://doi.org/10.1016/S0065-2660(08)60525-8
  57. Upadhyaya, A., T. D. Davis, R. H. Walser, A. B. Galbraith, and N. Sankhla. 1989. Uniconazole-induced alleviation of low-temperature damage in relation to antioxidant activity. Hort Science 24: 955-957
  58. Walker, M. A. and B. D. Mckersie. 1993. Role of ascorbate-glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141 : 234-239 https://doi.org/10.1016/S0176-1617(11)80766-2
  59. Walker, M. A., B. D. Mckersie, and IC. P. Pauls. 1991. Effects of chilling on the biochemical and functional properties of thylakoid membranes. Plant Physiol. 97 : 663-669 https://doi.org/10.1104/pp.97.2.663
  60. Wang, C. Y. 1982. Physiological and biochemical responses of plant to chilling stress. HortScience 17: 173-186
  61. Wilson, D. 1976. The mechanism of chill-and drought-hardening of PhaseoIus vulgaris. New Phytol. 76 : 257-260 https://doi.org/10.1111/j.1469-8137.1976.tb01459.x
  62. Wise, R. R. and A. W. Naylor. 1987. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83 : 272-277 https://doi.org/10.1104/pp.83.2.272