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A New Type of High Bandwidth RF MEMS Switch -
Toggle Switch

Bernd Schauwecker, Karl M. Strohm, Winfried Simon, Jan Mehner, and Johann-Friedrich Luy

Abstract —A new type of RF MEMS switch for low
voltage actuation, high broadband application and
high power capability is presented. Mechanical and
electromagnetic simulations of this new RF MEMS
switch type are shown and the fabrication process
and measurement results are given. The switching
element consists of a cantilever which is fixed by a
suspension spring to the ground of the coplanar line.
The closing voltage is 16V. The switches exhibit low
insertion loss (<0.85dB@30GHz) with good isolation
(>22dB@30GHz).

I. INTRODUCTION!

Over the past several years, developments in Micro-
Electro-Mechanical Systems (MEMS) have promoted
exciting advancements in the field of microwave
switching. Micromechanical switches were first
demonstrated in 1971 [1] as electrostatically actuated
cantilever arms used to swiich low-frequency electrical
signals. Since then, these switches have demonstrated
useful performance at microwave frequencies. Different
switch topologies have been investigated and tested [2-
17], and most of them use electrostatic actuation.

The MEMS devices offer the following advantages
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compared to semiconductor devices [3-6]. First,
significant reduction in insertion loss, which results in
higher figure of merit. Second, they consume
insignificant amount of power during operation which
results in higher efficiency. Third, they exhibit higher
linearity and as a result lower signal distortion when
compared to semiconductor devices.

However, the implementation of RF-MEMS switches
does not come with impunity. The following
disadvantages have to be taken into consideration: higher
actuation voltages (20 - 50 volts), lower switching speed
(2-20 ps), reduced lifetime, stiction and power handling
[5].

Therefore, there are five main challenging aspects for
RF MEMS switches: lowering the actuation voltage,
increasing the switching speed, increasing power
handling capabilities and improving life time and
reliability. For lowering the switching speed meander
spring suspension [7] and push-pull concepts have been
investigated [8]. Increasing the switching speed, the
power handling capabilities and improving reliability are
still a problem.

In this paper a new RF MEMS switch is presented
which has the characteristics of low actuation voltage,
high bandwidth operation and should be capable for high
power handling. In chapter 2 the new switch concept is
presented, in chapter 3 the mechanical simulation of the
new switch is shown, in chapter 4 the electromagnetic
design and simulation is discussed, in chapter 5 the
fabrication process is shown and in chapter 6 the DC and

RF measurement results are given.

II. THE NEw SwITCH CONCEPT

The proposed switch consists of a part of a signal line
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in a microstrip or coplanar environment witch can be
opened or closed. For this, part of the signal line consists
of a movable, metallic cantilever, witch is fixed by a
suspension spring and has a flexible metal connection
band on one end of the signal line and opens and closes
an ohmic contact on the other end of the signal line. Two
electrodes are provided for opening and closure using a
push-pull concept (Fig. 1). Therefore the switch is called
a Toggle-Switch.

For a coplanar waveguide (CPW) environment, the
cantilever is fixed by a suspension spring to the ground
of the coplanar lines. The suspension spring is build of
silicon nitride which isolates the cantilever against the
ground.

Thin electrodes on the substrate allow the switching of
the cantilever utilizing a push-pull concept. As in this
case no static voltages are needed on the signal line for
switching, the cantilever can contact directly, without a
dielectric between, the inner conductor of the coplanar
line. A flexible metal band builds the contact on the
other side of the cantilever. This allows, in closed
position of the switch, a transmission starting at DC and
builds on the other hand an ideal open for DC in the
open position of the switch. Due to this a large
bandwidth of operation can be achieved. This is a great
advantage compared to the well known Shunt-Air-
Bridge switches {2, 5] where only a capacitive shunt
connection can be achieved. This capacitance limits the
lowest frequency range of usage if a certain isolation
must be obtained.

MECHANICAL SIMULATION

The Toggle switch is designed to open and close an
electrical contact according to an external voltage signal.
Beside of the initial position where the cantilever lies
horizontally to the wafer surface its tip can either be
pulled down to the contact paddle or is pushed out of the
wafer plane. In the first case the pull electrode is
activated to close the signal line and in the second case a
voltage is applied on the push electrode to further
increase the gap separation for better performance in
case of high signal frequencies. Essential components of
the movable microstructure are shown in Fig. 1.

In a first step the Toggle switch is modeled by

Flexible metal band

Torsion spring

Push electrode

Pull electrode
Contact paddle

Fig.1 Schematic view on the Toggle switch.

analytical equations for dimensional design and
optimization. Results are voltage displacement functions
at several points of interest. Finally the obtained results
are verified by finite element simulations and additional
quantities such as local stress concentrations at notches,
eigenfrequencies and settling time are evaluated.

The analytical model of the Toggle structure is
complicated by the fact that the cantilever bends
significantly under electrostatic load. Fortunately the
displacements vary only in one direction. Consequently,
both the cantilever and the flexible metal band can be
described by the beam theory. In addition to the torsion
stiffness C,,, of the Si,N, suspension we consider also a

transversal shift at that point by Ci,,,;. Both terms are

3
trans = LZM)S (1)
3 [S‘
3 3 3
le -2 G hs We 4 E hs v}vs (2)
34 121,

where &g, w; and [; are the geometrical dimensions of the
spring and E and G are Young’s and shear modulus of
SixN.

Because the system is highly non-linear due to
deflection dependent electrostatic forces we need an
iterative solution procedure. The following approach is
based on the principle of Castigliano ([18] see
Appendix):

Compute the electrostatic pressure along the beam axis
as a function of the local displacements.

Evaluate the lateral force and bending moment along
the beam axis.

Calculate of the total strain energy.

Compute the reacting spring force and moment.

Compute the displacements along the beam axis.

Repeat step 1 to 5 until convergence occur.
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Fig.3 Displacements at different driving voltages.

Some results of above algorithm are shown in Fig. 3.
Reasonable small voltages are required to pull the lever
down to the contact paddle. Any further increase of the

applied voltage would lead to an instability called pull-in.

Pull-in occurs if the electrostatic forces grow faster than
the spring forces with respect to the displacements. As a
consequence the structure snaps to the counter electrode,
Usually pull-in happens if the structure is displaced to
about 33% of the nitial gap.

Finite element methods are state of the art {0 assess
the equilibrium state of complex 3-dimensional systems.
In our case the general purpose finite element tool
ANSYS™ was used 1o compute the static deformation
state, the stress distribution and the eigenfrequencies of
the cantilever.

ANSYS multiphysics capabilities allow for simul-
taneous modeling of different physical domains at once.
The mechanical region was described by about 3000
hexahedral solid elements, the electrostatic domain by
about 300 transducer elements (Fig. 4). Transducer
elements are based on a quasi analytical description of
the capacitance-stroke function within small gaps.
Advantages are small computing time and memory

Structural solid eloments

Fixed boundary -
conditions .
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Material domain 2

Fig. 4 Finite element model of the Toggle structure.

Fig. 5 Resuits of finite element simulations.
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Fig. 6 Stress distribution at the displaced structure.

consumption but fringing fields are neglected.

The computed analytical data agree very well to the
finite element results. It tums out that numerical
techniques are necessary to compute the release voltage
after pull-in, to consider the stiffening due to pre-stress
and warp owing to stress gradients. Analysis capabilities

are very manifold. Some results are shown in Fig. 5 and

6.
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ELECTROMAGNETIC SIMULATION AND DESIGN

The Toggle-Switch is used in a 50 € coplanar line
environment where the Toggle is used to build an open
in the center conductor (see Fig.7).

In closed position the signal is routed via the direct
metal contact to the cantilever and via the flexible metal
band back to the center conductor of the coplanar line.
The cantilever builds due to the small distance of about
3um to the grounded DC switching electrodes a
capacitance which must be compensated to achieve a
good performance.

A broadband compensation of the capacitance could
be achieved by using the LC matching network which is
shown in Figure 8.

It has been investigated which maximum capacitance
could be compensated while achieving a good match up
to 30 GHz. The matching at the feeding port (Sy1),
depending from the inductance L and the capacitance C
that must be compensated, is shown in Figure 9. It could
be seen that a capacitance of 100 fF could be
compensated by a total inductance of 350 pH up to a
frequency of 34.5 GHz. Frequency scaled, yields the
result that a maximal capacitance of 118 fF could be
compensated assuming a match of 20 dB at 30 GHz. The

Port 1

Fig. 7. Simulation model of the Toggle-Switch.
L/2 L2
s11 = Z20=50Q

(o
Fig. 8. L/C matching network.
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Fig. 10. Simulation results of the Toggle-Switch.

needed inductance is 450 pH. A higher compensating
inductance will only decrease the performance in the
lower frequency range.

The 3D FDTD field simulator Empire™ [19] has been
used to simulate and optimize the Toggle-Switch. A
compensation line with a width of 32pm and a length of
120um on the left side of the switch and a line with the
width of 32um and a length of 100pum on the right side
was found as optimal solution.

The simulation results of the optimized structure in
Fig. 10 show that with this matching technique the return
loss is above 15dB up to 34GHz while the insertion loss
is below 0.1dB. Due to the optimization, the operating
frequency range was increased by about 9GHz, if a
match of 15dB for the return loss is assumed.
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FABRICATION PROCESS

The Toggle-Switches are fabricated on high-resistivity
silicon wafers (p > 4000Qcm) with a wafer thickness of
525 pm.

First, a resistor layer is defined by a lift-off process. A
WSi,N, — layer with a high resistivity (layer resistivity =
500 Qcm) is used. The value of the resistivity can be
changed with the value of the nitride content in the layer
and with the process parameter. After that, the lower
electrode (underpass metallization) is defined by a lift-
off process with 50nm Ti and 250nm Au. Then, the
lower electrode is isolated by a 100nm thick PECVD
silicon nitride layer under the cantilever region. Next, the
transmission lines are defined by a lift-off process with
50nm Ti and 2500nm Au. At this point, an air-bridge
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Schematic process flow of the Toggle-Switch.

resist with a height of 2.5-3pm is patterned as first
sacrificial layer. After this the contact-paddle (Fig.12) is
defined.

Then a second isolation-layer is deposited. This layer
is 500nm thick and forms the torsion spring for the
Toggle-Switch. Afterwards, the cantilever metallization
is sputtered. The cantilever material consists of 0.8um
Au. Finally, the cantilever resist is defined and the
cantilever is etched. After these steps, a flexible metal
band on top must be defined (Fig. 13). For this, a second
air-bridge resist with a height of 2.5-3pm is patterned as
second sacrificial layer. Next, the metallization for the
flexible metal band is evaporated. The material consists
of 1.0um Au and is defined by a lift-off process. Finally,
the two air-bridge resists (sacrificial layers) are removed
with a CPD process.
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Fig. 13. SEM picture of the flexible metal band.

MEASUREMENT RESULTS

The fabricated Toggle-Switch (see Fig. 14) has been
measured to investigate the DC and RF performance.
This yields information regarding pull-in voltage, switch
insertion loss, return loss and isolation. S-parameter
measurements were performed over the 0.5 — 40GHz
frequency range using an HP network analyzer 8510C.
Line-Reflect-Match (LRM) calibration was used. A
Keithley Voltage/Current source has been used to apply
the voltage for the DC switching.

A voltage of 16V is necessary to close the switch. Due
to the high residual stress in the cantilever material the
contact opens by reducing the DC voltages to 0V, and
the cantilever jumps back to the original position. With

an additional DC voltage at the push electrode the
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Fig. 15. Simulation and measurement results of the

Toggle-Switch in closed position.

distance between the cantilever and the contact paddle
can be increased.

In Fig. 15 one can see a comparison between the
measurement results and the simulation results of the
closed switch. The return loss of the closed swiltch is in
the measurement up to 30GHz below —10dB while the
simulation results show a value below —17dB. The
insertion loss of the switch is in the measurements up to
30GHz below 0.85dB while the simulation, where the
metal losses have been neglected, shows an insertion
loss of 0.1dB.

If the switch is in open position an isolation of at least
54dB at 1GHz, 32dB at 10GHz and 22dB at 30GHz is
measured (Fig. 16). The simulation predicted lower
values for the isolation (about 19dB at 30GHz) which
results from a lower capacitance of the simulated switch
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compared to the measured switch.

The capacitance of the measured switch in open
position is probably higher because the distance between
the cantilever and the coplanar line is not as large as
simulated (3pm). This different capacitance and the
neglection of the metal losses in the simulation causes
the different measurement and
simulation in the return loss (0.85dB@ 30GHz measured
and 0.1dB@30GHz simulated). Investigations have
shown, that metallic losses for the used CPW lines are
about 0.1dB/mm at 30GHz.

The reason for the higher necessary pull-in voltage is

values between

the greater distance of the cantilever to the contact
paddle. In the simulation a distance of 0.5pum is
supposed. This larger gap is also the reason for the better
isolation in open state in comparation to the simulation.
Because of a higher resistivity of the resistor layer (>
800 Qcm) the microstrip mode between the cantilever
and the push electrode is not correctly stimulated.
Therefore the electromagnetic field is disturbed and a

higher transmission loss is measured.

CONCLUSION

A new RF MEMS switch type for high bandwidth
operation is presented. These devices offer the potential
for building a new generation of low loss high-linearity
microwave circuits for a variety of phased antenna arrays
for radar and communication applications. Optimization,
reliability and long term stability of these switches have

to be investigated in near future.
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APPENDIX

Step 1:
Computation of the electrostatic pressure P, along the
beam axis (x) as a function of the local displacements u,:

&V (al)
2(d—-u,)’

V is the applied voltage and d the initial electrode gap.

P (xu,)=

Step 2:
Computation of the lateral force F, bending moment
Mb:

F,(x)= [ B,(s)ds+F; T(x,a) (a2)
M, (x)® j F,(s)ds+MT(x,a) (a3)
0

where F; and M, are the reacting SiyN, spring force and
moment and I'{x,a) is a jump function starting with value
1 at a (Fig. 3).

Step 3:

Computation of the total strain energy W,:

FZ 2
W, =- . ij(x)zds+—f oM@y
2EI 2C 2C

where E is Young’s modulus and / the area moment of

trans rot

inertia of the cantilever cross section. The first term
captures the bending energy of the cantilever and metal
band, the second one the transversal string and the third
one the rotational spring.

Step 4:
Computation F; and M, in a such an extent that the
following equations are fulfilled (Castigliano’s theorem):

8WS(FS,MS)=O’ BWS(FS,MS):0 (a5-6)
JF, IM,
Step 5:
Compute the final displacements u, along the beam
axis:
uy(x)=—%‘(’)‘.£Mb(s—x)dsds (a7)

Repeat step 1 to 5 until convergence occur.
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