132 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.2, NO. 2, JUNE, 2002

SOC Bus Transaction Verification Using AMBA
Protocol Checker

Kab Joo Lee, Si Hyun Kim, and Hyo Seon Hwang

Abstract— This paper presents an ARM-based SOC
bus transaction verification IP and the usage
experiences in SOC designs. The verification IP is an
AMBA AHB protocol checker, which captures legal
AHB transactions in FSM-style signal sequence
checking routines. This checker can be considered as
a reusable verification IP since it does not change
unless the bus protocol changes. Our AHB protocol
checker is designed to be scalable to any number of
AHB masters and reusable for various AMBA-based
SOC designs. The keys to the scalability and the
reusability are Object-Oriented Programming (OOP),
port, paper
describes how OOP, virtual port, and bind features

virtual and bind operation. This
are used to implement AHB protocol checker. Using
the AHB protocol checker, an AHB simulation
monitor is constructed. The monitor checks the legal
bus arbitration and detects the first cycle of an AHB
transaction. Then it calls AHB protocol checker to
check the expected AHB signal sequences. We
integrate the AHB bus
simulation environment to replace time-consuming

monitor into Verilog
visual waveform inspection, and it allows us to find
design bugs quickly.

This paper also discusses AMBA AHB bus
transaction coverage metrics and AHB transaction
coverage analysis. Test programs for five AHB
masters of an SOC, four channel DMAs and a host
interface unit are executed and transaction coverage
for DMA verification is collected during simulation.

Manuscript received January 2, 2002; revised June 12, 2002.

Kab Joo Lee is with system LSI Divison Samsung Electronics Co.,
Ltd. San #24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyunggi-Do,
South Korea

(E-mail: flyingv@samsung.co.kr)

These coverage results can be used to determine the
weak point of test programs in terms of the number
of bus transactions occurred and guide to improve
the quality of the test programs. Also, the coverage
results can be used to obtain bus utilization statistics
since the bus cycles occupied by each AHB master
can be obtained.

Index Terms — SOC Verification, AERA, Bus tran-

saction coverage.

1. INTRODUCTION

(SOC) typically
involves in design and integration of one or more

Designing Silicon-On-a-Chip

microprocessors, DSP units, on-chip bus architecture,
blocks.
industrial processors have their own bus architectures

memory system, and peripheral Typical
and bus transaction protocols. During SOC design phase,
on-chip bus architecture should be fully understood and
precisely implemented. Also, most module level blocks
have bus interface wrapper, either as master and/or slave,
to be attached to bus.

Verifying bus transactions of an SOC design may
require a great deal of visual simulation waveform
inspection, which can be time-consuming. Figl shows an
example of AMBA [1] AHB bus transactions. It is 4-beat
incrementing burst, transfer size of byte. In order to
verify the correctness of AHB bus transactions, it is
necessary to check AHB signals for all bus transactions
in a cycle-based manner. The motivation for our work is

to capture legal bus transaction behavior in a form of

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.2, NO. 2, JUNE, 2002 133

HGRANTx = 8

INCR4

ADDR + 1

Transition conditions : HREADY = 1, HRESP = OKAY

(LTTPETT T TN

Monitor

Burst type
Transfer size
Transfer type

Address increment size

Fig. 1. 4-beat incrementing burst transfer diagram.

Fig. 2. DUV block diagram.

cycle-based checker so that we can greatly reduce the
waveform inspection time.

In this paper, ARM-based SOC bus transaction
verification using AMBA protocel checker is introduced.
An AMBA AHB protocol checker is written using
VERA Hardware Verification Language (HVL) [2] and
integrated into Verilog simulation environment. This
AHB protocol checker can be considered as a
verification IP since it can be used for any AMBA-based
design verification with little modifications.

This paper also introduces AMBA AHB transaction
coverage metrics and analysis. The coverage metrics are
also defined using VERA HVL. This coverage metric
can be used to improve verification efficiency in two

ways. First, it allows us to create more testbenches for
less covered bus transactions. Secondly, it can provide
bus utilization information of bus masters so that one can
jmprove bus arbitration mechanism.

This paper is organized as follows. Section 2 describes
Design Under Verification (DUV) which has two AMBA
buses. Section 3 introduces AMBA AHB protocol
checker and simulation monitor. Section 3 also defines
bus transaction coverage metrics. Section 4 describes the
methodology for AHB protocol checker integration into
Vertlog simulation environment. Section 5 discusses
usage

experiences, especially design bugs and

transaction coverage analysis.

134 K.J. LEE et al. : SOL BUS TRANSACTION VERIFICATION USING AMBA PROTOCOL CHECKER

I1. DESIGN UNDER VERIFICATION

Design under verification (DUV) is shown in Fig2.
DUV is an AMBA-based SOC for wireless network
applications. It employs two AMBA buses, AHB and
APB. A total of 8 AHB masters can request bus
simuitaneously and only one AHB master can start AHB
transactions upon the reception of bus grant. AHB
masters are ARM, Host Interfacel, Host Interface2, TIC,
and 4 DMA channels. AHB bus arbitration schemes are
combination of fixed priority and rotated priority.

II1. AMBA AHB PROTOCOL CHECKER-
VERIFICATION 1P

AHB protocol checker that we designed is basically a
bus transaction checker. Legal AHB transactions are
captured in FSM-style sequence checking routine. It is
designed to be scalable to any number of AHB masters
and reusable for various AMBA-based SOC designs.
The keys to the scalability and the reusability are Object-
Oriented Programming (OOP) [3] and virtual ports. This
section describes how OOP and virtual port features are
used to implement AHB protocol checker. This section
also introduces an AHB simulation monitor that detects
the start of AHB transaction and checks the legal AHB
transaction in cycle-based fashion by calling the AHB
protocol checker.

A. AHB Checker Class and Simulation Monitor

AHB protocol checker class is defined as shown in
Fig. 3. The class includes local variables and methods.
The variable type AHB PORT SIGNALS is a bind
variable type, which will be used during checker object
creation with a specific AHB master. The class method
new is to create AHB_checker class object. When created,
VERA accepts a bind variable input to create an
AHB_Checker object specific to a particular AHB master.
Using a bind variable during AHB Checker creation
allows us to create multiple number of AHB Checker
objects for multiple AHB masters. The class method fop
decides the bus transaction type based on HSIZE and
HBURST and branches to the proper transaction
verification task included in the class. Each task of four
class tasks (only four transaction verification tasks are

shown in Fig. 3) monitors AHB signals in cycle-based
manner and checks if the AHB transactions are
performed according to the AHB bus protocol. The
details of these tasks are not shown in this paper. The
AHB slave signals such as HREADY and HRESP are
also monitored and used to check the valid AHB

transactions.

class AHB_Checker
{

bit [HBURST_WIDTH-1 : 0] burst;
i, addrincr, addrBound,
transCount, burstlLength;

integer

AHB_PORT_SIGNALS master;
task new

task top(});

task single_chk

(AHB_PORT_SIGNALS busOwner);

(bit [HSIZE_WIDTH-1 : 0] size,
bit [HADDR_WIDTH-1 : 0] addrinit,
integer addrincr);

task incrX_chk (bit [HSIZE_WIDTH-1 : 0] size,
bit {HADDR_WIDTH-1 : 0] addrinit,
integer addrincr);

task incrN_chk (bit [HSIZE_WIDTH-1 : 0] size,

bit (HADDR_WIDTH-1 : 0] adudrinit,
integer addriner);

(bit {HSIZE_WIDTH-1 : 0] size.

bit [HADDR_WIDTH-1 : 0] addrinit,
integer addrincr);

task wrapN_chk

St

Fig. 3. AHB protocol checker class.

This checker class and the tasks included in the class
can be considered, as a verification IP since it is reusable
for any AHB masters. The class object creation and the
detection of the first cycle of AHB transaction are
described in the VERA main test program. Note that in
order to detect the first AHB cycle, one has to monitor
and check the AHB arbitration. An AHB master can
perform an AHB transaction only after it requests the
bus to arbiter and gets bus grant signal from arbiter. Thus,
using AHB protocol checker allows us to check bus
request and grant logic mechanism.

Fig. 4. shows an example of AHB monitors (DMA
the DMA AHB
simulation monitor first checks if DMA requests bus and

monitor). As mentioned above,
gets granted properly. Then, based on the AHB slave
condition (HREADY), it branches to the top task of
AHB protocol checker, which detects first cycle of AHB

transaction. One can construct an AHB monitor easily by

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.2, NO. 2, JUNE, 2002 135

modifying the example AHB monitor.

task
DMAO_AHB_monitor()
{
integer dmaOReadyWait = 0;
string dmaOName = “GDMA CHANNEL ¢,

while {1) {
@ (posedge CLOCK);
@0, HBUSREQ_WAITv
@1, HGRANT_WAITv

coverage (OFF, DMAO_cov);
DMAQ.$HBUSREQ == 1'b1;
DMAOQ.$HGRANT == 1'b1;

if (DMAQ.SHREADY == 1'b0} {
@|{posedge CLOCK);
dmalReadyWait++;
if (dmaOReadyWait > HREADY_WAITv)
error_report (dmaOName);
Yelse {
@0, HMASTER_WAITv TOPv.hmaster_ahb == M_GDMAOv,
DMAD.$HTRANS == NONSEQv;
dmalCovArg = ({DMA0.$HBURST, DMAD.SHSIZE});
DMAO_AHB_Checker.top(});
coverage (ON, DMAQ_cov);
dmalReadyWait = 0;
13y

Fig. 4. AHB simulation monitor example.

B. Virtual Port and Binding

Basically, AHB protocol checker is a class that
embedded in a simulation monitor, which runs all the
time during simulation. This checker needs to be
designed scalable and reusable since there can be several
AHB masters in an SOC design. Just copying the entire
checker routines for each AHB master should not
considered as a solution. This paper describes how
virtual port and bind operation can be used for easy
checker object creation and placement in target DUV.
Conceptually, virtual port can be considered as signals
that occur repeatedly in design. Good example of virtual
port is AHB signals. All AHB modules need to interface
the AMBA bus with AHB signals, which are common to
all AHB modules. Thus, defining virtual port once, and
each module’s AHB
corresponding physical port information can provide

binding signals with the
efficient object-oriented verification IP implementation.
Fig. 5. shows virtual port and bind operation for DMA
channel 0 written in VERA HVL. In the Fig5, first,
virtual ports are defined, which are AHB signals in AHB
masters. Virtual ports defined in our AHB checker are
HADDR, HTRANS, HSIZE, HBURST, HBUSREQ,
HWRITE, HREADY, HRESP, and HGRANT. Then bind
operation is performed. The virtual port variable,

AHB _VPORT SIGNALS, is used to define bind variables
for AHB masters. A bind variable has physical port
information (RTL signal) of a particular AHB master. A
bind variable should be defined for each AHB master to
be monitored during simulation.

port bind

AHB_VPORT_SIGNALS AMB_VPORT_SIGNALS DMAO_BIND

{ {
HADDR; HADDR TOPv haddr_dma0;
HTRANS; HTRANS TOPv htrans_dmad;
HSIZE; HSIZE TOPv . hsize_dmal;
HBURST: HBURST TOPv.hburst_dma0,;
HBUSREQ; HBUSREQ TOPv.hbusreg dmab;
HWRITE; HWRITE TOPv . hwrite_dma0;
HREADY,; HREADY TOPv.hready_dma0;
HRESP; HRESP TOPv hreap_dmaQ;
HGRANT; HGRANT TOPv.hgrant_dma0;

) }

Fig. 5. AHB virtual ports and binding for DMA channel 0

C. Coverage Definition

AHB transaction coverage is defined based on two
AHB signals, HBURST and HSIZE. Since HBURST is a
3-bit signal and HSIZE is also a 3-bit signal, we can
define a total of 64 transaction coverage metrics. In our
implementation, we define 24 transaction coverage
metrics using the combinations of these two signals.
Tablel shows the bus transaction metrics defined during
verification. In this table, only 9 coverage metrics out of
24 are shown. In our actual coverage definitions,
combinations of all types of HBURST and only 3 types
of HSIZE (byte, halfword, word) are used.

These coverage metrics are captured in VERA
coverage definition structure and a coverage object is
created for each AHB master. Initially, all coverage
counters are set to zeros. Whenever any of these
coverage definitions occurs during simulation, the
corresponding coverage counters are incremented.

IV. AmMBA AHB PrOTOCOL CHECKER
INTEGRATION

The AHB checker and simulation monitor is written in
VERA HVL. Thus, it is required to integrate VERA
verification environment and Verilog environment. This

136 K. J. LEE et al. : SOL BUS TRANSACTION VERIFICATION USING AMBA PROTOCOL CHECKER

Table 1. AHB transaction coverage metrics examples.

Coverage name HBURST/HSIZE Coverage Description
SINGLE BYTE 000/000 Single transfer, transfer size of byte
SINGLE HWORD 000/001 Single transfer, transfer size of halfword
SINGLE WORD 000/010 Single transfer, transfer size of word
WRAP4 BYTE 010/000 4-beat wrapping burst, transfer size of byte
WRAP4 HWORD 010/001 4-beat wrapping burst, transfer size of halfword
WRAP4 WORD 010/010 4-beat wrapping burst, transfer size of word
INCR4 BYTE 011/000 4-beat incrementing burst, transfer size of byte
INCR4 HWORD 011/001 4-beat incrementing burst, transfer size of halfword
INCR4 WORD 011/010 4-beat incrementing burst, transfer size of halfword

VERA testhench components Verilog-VERA
simulation top : DUV _
I VERA main testbench W th_test_top
l AHB bus protocol checker—l FSystem clock drive ‘
“ fuyut » Verilog Testbench
AHB bus transfer type :DUV_th
coverage model
; DUV_TOP
Verilog to VERA ’7 vera_shell l WV T0
AHB signal connection Signat
1 DUV tb J drive/monitor
{ Macro definitions [

l VIO

il DUV : DUV_TOP

VERA Virtual
Machine

Verilog
Simulator

ARM
DMA CH.0~4
Host Interface

Fig. 6. Verilog-VERA simulation environment.

section describes AHB protocol checker/simulation
monitor integration into Verilog simulation environment.
The integration requires creation of Verilog-VERA
simulation top file, definitions of VERA interface signals
for monitoring AHB transactions, and VERA main
program that creates AHB checker objects, AHB
transaction coverage objects, and execution of VERA
monitors with Verilog simulation.

A. Simulation Environment

Fig. 6. shows the Verilog-VERA simulation environment,
which can be divided into two worlds. The Verilog
environment includes DUT in Verilog HDL, Verilog-
VERA simulation testbench which includes vera_shell
for VERA interface, Verilog-VERA simulation top
module, and Verilog simulator. The VERA environment
includes VERA testbench components and VERA virtual

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.2, NO. 2, JUNE, 2002 137

HOMAD test program names

D

simulation with VERA
AHB protocol checker

use
SOFTWARE Simulation
|)ﬂ fog file
v
Run Verilog-VERA VERA AHB

coverage report

All test program

imulation done

(Simulation donD

Simulation results

post processing

AHB transaction
statistics

AHB type,
number

Script flow

AHB type,
number

Fig. 7.

machine. The VERA test bench components consist of
VERA main program, AHB protocol checker, AHB
coverage model, interface signal definition between
Verilog and VERA (all AHB signals to be monitored are
defined), and macro definitions. Verilog simulation and
VERA checker are synchronized with the system clock
generated in Verilog-VERA simulation top module.
VERA and Verilog
Programming Language Interface (PLI).

VERA monitors, which are instantiated in VERA
main program, are run during Verilog simulation and

simulator communicates via

watch Verilog simulation termination condition. If
simulation is terminated, VERA monitors are also
terminated and VERA coverage reports are generated.

B. Simulation and Post-processing Script Flow

Fig. 7. shows simulation and post-processing flow for
4 channel DMA AHB transaction coverage analysis. The
simulation script reads DMA test program name and
runs the corresponding test program written in ARM
assembly program. In other words, DMA operation is
tested in chip level verification environment that
AMBA bus
memory controller, and interrupt controller.

includes ARM processor, controlier,

Each test program is run in Verilog-VERA simulation

Script and post-processing flow for AHB transaction coverage analysis.

environment including AHB protocol checker and
coverage metrics. After each program execution, VERA
AHB transaction coverage reports are generated for each
DMA channel, i.e. AHB monitors are attached to all four
DMA channels since a test program may utilize several
DMA channels. After execution of all DMA channel test
programs, simulation results post processing is executed.
This step reads AHB coverage reports and produces
AHB transaction statistics, the total AHB transactions
obtained for DMA channels. Scripts for post processing
are written in perl langauge.

V. AHB TRANSACTION VERIFICATION RESULTS

This section describes design bugs that are found
AHB
transaction coverage results obtained from four channel
DMA verification.

using the protocol checker, and analyzes

A. Design Bug

The AHB monitor was attached to Host Interfacel
which has a newly-designed AHB wrapper. For some
cases, Host Interfacel did not give IDLE signal
(HTRANS) at the end of AHB transactions, and this bug

138

K. J. LEE et al. : SOL BUS TRANSACTION VERIFICATION USING AMBA PROTOCOL CHECKER

Table. 2. DMA AHB master transaction coverage.

DMA Channel
Test Program
DMAO DMAL1 DMA2 DMA3
Tl 0 0 0 0
T2 S _8(60) S_8(60 S 8(60) S_8(60)
S 16(30) S_16(30) S 16(30 S 16(30)
S 32(14) S_32(14) S 32(14) S_32(14)
T3 S 8(15) S_8(15) S 8(15) S _8(15)
S_16(8) S_16(8 S 16(8) S '16(8)
S 32(7) S_32(7) S 32(7) S.32(h
T4 s 32(1) S 32(1) S 32(1) S:32¢1)
14 8(15) 14_8(15) 14 8(15) 14 8(15)
14_16(8) 14 16(8) 14 16(3) H:16(8)
4 32(7) 14 32(7) 14 32(7 14_32(7)
S 8(4) S_8(4) S 8(4) S 8(4)
S _16(4) S_16(4) S 16(4) S.16(4)
TS S 32(5) S_32(5) S 32(5) S 32(5)
14_8(7) 14_8(7) 14 87) 14 8(7)
14_16(6) 14_16(6) 14 16(6) 14_16(6)
14 32(4) 14_32(4) 7 14 32(4)
32(4
T6 S 8(8) S 8(8)
S_8(8 S
S &(8) S_8(8)
T7 S 32(12) S 32(9)
S_32(9) S
S 32(11
8.32(109) S 32(9)
T8 S 32(2) S_32(2) S 32(2)
T9 S 32(45) S 32(32) S 32(25) S 32(24)

was detected using the AHB protocol checker. Since
protocol checker flags verification error at the time of
protocol violation, one can easily use error information

to find the cause of verification error.

B. AHB Transaction Coverage Analysis

A total of 9 test programs (T1-T9) were executed for
four channel DMA master transaction verification as
shown in Table 2. A total of 8 (T1-T8) test programs
were used for DMA channels 1, 2, and 3, separately. The
italic letters in the table represent the coverage reports
obtained during DMA channel 0 verification. For
instance, S__8(60) represents that single transfer, transfer
size of byte, occurred 60 times. The letters with
underlines represent the coverage reports obtained

during DMA channel 1 verification. The letters in the
boxes are associated with DMA channel 2 verification.
The letters in the dark region are associated with DMA
channel 3 verification.

Table 2 shows the results of coverage report during 4
channel DMA verification with AHB protocol checker.
The types of AHB transactions supported by DMA are
S 8 (single byte transfer), S 16 (single half-word
transfer), S 32 (single word transfer), 14 8 (four beat
increment byte transfer), 14 16 (four beat increment
half-word transfer), and 14 32 (four beat increment word
transfer). The numbers in the parenthesis represent the
number of DMA master AHB transactions occurred
during simulation. Thus, S_8(60) means that single byte
transfer occurred sixty times during simulation.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.2, NO. 2, JUNE, 2002 139

The initial observation of this table indicates that
DMA test programs covered all AHB transaction types
supported by DMA. Since DMA operation is identical
for each channel, the coverage numbers looks identical
also. Note that test programs T6 and T7 are written to
use two DMA channels and the coverage reports show
two DMA channels are actually used. All of these
observations allow us to verify the intents of the test
programs, which is one of the important aspects of
functional coverage analysis.

Note that test program T1 did not produce any AHB
master bus transactions since T1 only reads and write

DMA registers. It only requires DMA to be a AHB slave.

Transaction coverage can be also used to estimate bus
utilization of test program since the number of bus

transactions implies how much each master occupied bus.

V1. CONCLUSIONS

This paper presented SOC bus transaction verification
and coverage analysis using VERA AHB protocol
checker. The protocol checker can be considered as a
verification IP so that it can be used for various AMBA-
based SOC designs. Since it monitors AHB signals and
detects illegal AHB transactions, it can replace time-
consuming visual inspection for bus transaction
sequence verification. Note that implementing this type
of verification routines requires knowledge regarding
specific bus protocol and verification system.

This paper also presented AHB transaction coverage
analysis. four channel DMAs were verified in chip level
verification environment and transaction coverages were
collected during verification. These coverage results
were used to determine the weak point of test program in
terms of the number of transactions occurred and guide
to improve the quality of the test programs. Also, the
coverage results can be used to obtain bus usage
statistics since the actual bus cycles used by each DMA
channel can be obtained using the coverage numbers.

One disadvantage of using AHB protocol checker is
imulation overhead caused by running Verilog
simulation with AHB monitors. The simulation overhead
actually depends on how many monitors are integrated in
a design and how a test program is designed. However,
we believe that the benefits using the checker may easily

overwhelm the disadvantages. Our protocol checker did

not implement SPLIT, RETRY protocol since the AHB
master in our design did not support these types of bus
transactions.

REFERENCES

[1] AMBA Specification (Rev 2.0), ARM Ltd., 1999

[2] Vera Verification System User's Manual, Synopsys Inc.,
1999

[3] Bruce Eckel, C++ Inside & Out, McGraw-Hill, California,
1993

Kab Joo Lee received B.S. in Electronic
Engineering from Hanyang University,
Ansan, Korea, 1989. He also received
his Master of Engineering in Computer
Engineering from Cornell University,
Ithaca, NY, in 1992, and Ph.D. in
Computer Engineering from Texas
A&M University, College Station, TX,
in 1997. Since June 1997, he has been a senior engineer at
Samsung Electronics Co., where he is now working on
development of wireless LAN ASICs and software. During
1997 — 2000, he has worked on development of ASIC
verification methodologies including static timing analysis,
formal equivalence checking, and RTL wverification. During
this period, his duties included ASIC design library
development and design flow integration for Samsung ASIC
products. His research interests include wireless LAN MAC
protocols, architecture, and implementations, as well as SOC

verification.

Si-Hyun Kim was born in Busan, Korea
in 1971. He received B.S. and M.S.
degrees in Electrical Engineering and
Computer Science from the Ritsumeikan
University, Kyoto, Japan, in 1996, and
1998, respectively. Since March 1998, he
has been an engineer in system design
technology lab,
Co., Koreca, where he is now working on system level

Samsung Electronics

verification IP development. He has been working in the areas
of functional
verification, dynamic simulation using Vera, and functional

verification methodologies using formal

verification IP development.

140 K.J.LEE et al. : SOL BUS TRANSACTION VERIFICATION USING AMBA PROTOCOL CHECKER

Hyoseon Hwang was born in 1974 in
Pusan, Korea. She received B.S. degree
in Computer Engineering from Pusan
National University, Korea in 1998. In
1998, she joined the ASIC division of
Samsung Electronics Co., Korea, and
involved in design verification using
formal equivalence checking. Since 2001,

she has been working for development of wireless LAN
hardware system. Her interests include system level design and
verification for wireless systems.

