Effects of Harmaline and Harmalol on Dopamine Quinone-induced Brain Mitochondrial Dysfunction

  • Han, Eun-Sook (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Lee, Chung-Soo (Department of Pharmacology, College of Medicine, Chung-Ang University)
  • Published : 2002.09.01


The present study elucidated the effect of $\beta$-carbolines (harmaline and harmalol) on brain mitochondlial dysfunction caused by the tyrosinase-induced oxidation of dopamine. Harmaline, harmalol and antioxidant enzymes (SOD and catalase) attenuated the dopamine-induced alteration of membrane potential, cytochrome c release and thiol oxidation in mitochondria. In contrast, antioxidant enzymes failed to reverse mitochondrial dysfunction induced by dopmnine plus tyrosinase. $\beta$-Carbolines decreased the damaging effect of dopamine plus tyrosinase against mitochondria, except no effect of harmalol on thiol oxidation. Antioxidant enzymes decreased the melanin formation from dopamine in the reaction mixture containing mitochondria but did not reduce the formation of dopamine quinone caused by tyrosinase. Both harmalol and harmaline inhibited the formation of reactive quinone and melanin. Harmalol being more effective for quinone formation and vise versa. The results indicate that compared to MAO-induced dopamine oxidation, the toxic effect of dopamine in the presence of tyrosinase against mitochondria may be accomplished by the dopamine quinone and toxic substances other than reactive oxygen species. $\beta$-Carbolines may decrease the dopamine plus tyrosinase-induced brain mitochondrial dysfunction by inhibition of the formation of reactive quinone and the change in membrane permeability.



  1. Albores, R., Neafsey, E.J., Drucker, G., Fields, J.Z. and Collins, M.A. (1990). Mitochondrial respiratory inhibition by N-methy- 1ated $\beta$-carboline derivatives structurally resembling N-methyl- 4-phenylpyridine. Proc. Natl. Acad. Sci. USA, 87, 9368-9372 https://doi.org/10.1073/pnas.87.23.9368
  2. Atlante, A., Gagliardi, S., Marra, E., Calissano, P. and Passarella, S. (1999). Glutamate neurotoxicity in rat cerebellar- granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment. J. Neurochem., 73, 237-246 https://doi.org/10.1046/j.1471-4159.1999.0730237.x
  3. Barbaccia, M.L., Ravizza, L. and Costa, E. (1986). Maprotiline: an antidepressant with an unusual pharmacological profile. J. Pharmacol Exp. Ther., 236, 307-312
  4. Berman, S.B. and Hastings, T.G- (1999). Dopamine oxidation alters mitochondrial respiration and induces permeability tran- sition in brain mitochondria: implications for Parkinson's dis- case. J. Neurochem., 73, I 127-1137 https://doi.org/10.1046/j.1471-4159.1999.0731127.x
  5. Bernardi, P. (1996). The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim. Biophys. Acta, 1275, 5-9 https://doi.org/10.1016/0005-2728(96)00041-2
  6. Bustamante, J., Bersier, G., Romero, M., Badin, R.A. and Bov- eris, A. (2000). Nitric oxide production and mitochondrial dys- function during rat thymocyte apoptosis. Arch. Biochem. Biophys., 376, 239-247 https://doi.org/10.1006/abbi.2000.1716
  7. Cassarino, D.S., Parks, J.K., Parker, W.D. Jr. and Bennett, J.P. Jr. (1999). The Parkinsonian neurotoxin MPP+ opens the mito- chondrial permeability transition pore and releases cyto- chrome c in isolated mitochondria via an oxidative mechanism. Biochim. Biophys. Acta, 1453, 49-62 https://doi.org/10.1016/S0925-4439(98)00083-0
  8. Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med., 29, 323-333 https://doi.org/10.1016/S0891-5849(00)00302-6
  9. Clark, J.B. and Nicklas, W.J. (1970). The metabolism of rat brain mitochondria. Preparation and characterization. J. Biol. Chem., 245, 4724-4731
  10. Cohen, G., Farooqui, R. and Kesler, N. (1997). Parkinson dis- ease: a new link between monoamine oxidase and mitochon- drial electron flow. Proc. Natl. Acad. Sci. USA, 94, 4890-4894 https://doi.org/10.1073/pnas.94.10.4890
  11. Cohen, G. and Kesler, N. (1999). Monoamine oxidase and mitochondrial respiration. J. Neurochem., 73, 2310-2315 https://doi.org/10.1046/j.1471-4159.1999.0732310.x
  12. Femandez de Arriva, A., Lizcano, J.M., Balsa, M.D. and Unzeta, M. (1994). Inhibition of monoamine oxidase from bovine ret- ina by $\beta$-carbolines. J. Pharm. Pharmacol., 46, 809-813 https://doi.org/10.1111/j.2042-7158.1994.tb03735.x
  13. Fu, W., Luo, H., Parthasarathy, S. and Mattson, M.P. (1998). Cat- echolamines potentiate amyloid $\beta$-peptide neurotoxicity: in- volvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol. Dis., 5, 229-243 https://doi.org/10.1006/nbdi.1998.0192
  14. Gearhart, D.A., Collins, M.A., Lee, J.M. and Neafsey, E.J. (2000). Increased $\beta$-carboline 9N-methy1transferase activity in the frontal cortex in Parkinson's disease. Neurobiol Dis., 7, 201-211 https://doi.org/10.1006/nbdi.2000.0287
  15. Kim, K.J,, Jang, Y.Y., Han, E.S. and Lee, C.S. (1999). Modula- tion of brain mitochondrial membrane permeability and synap- tosomal $Ca^2^+$ transport by dopamine oxidation. Mol. Cell. Biochem., 201, 88-96
  16. Kim, D.H., Jang, Y.Y., Han, E.S. and Lee, C.S. (2001). Protective effect of harmaline and harmalol against dopamine- and 6- hydroxydopamine-induced oxidative damage of brain mito- chondria and synaptosomes, and viability loss of PC12 cells. Eur. J. Neurosci., 13, 1861-1872 https://doi.org/10.1046/j.0953-816x.2001.01563.x
  17. Kuhn, W., Muller, T., Grosse, H. and Rommelspacher, H. (1995). Plasma harman and norharman in Parkinson's disease. J. Neu- rat. Transm. Suppl, 46, 291-295
  18. Kuhn, W., Muller, T., Grosse, H. and Rommelspacher, H. (1996). Elevated levels of harman and norharman in cerebrospinal fluid of parkinsonian patients. J. Neural. Transm., 103, 1435-1440 https://doi.org/10.1007/BF01271257
  19. Lai, C.-T. and Yu, P.H. (1997). Dopamine- and L-$\beta$-3,4-dihydrox- yphenylalanine hydrochloride (L-DOPA)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors, Biochem. Pharmacol, 53, 363-372 https://doi.org/10.1016/S0006-2952(96)00731-9
  20. Lee, C.S., Han, E.S., Jang, Y.Y., Han, J.H., Ha, H.W. and Kim, D.E. (2000). Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine-induced dam- age of brain mitochondria and PC12 Cells. J. Neurochem., 75, 521-531 https://doi.org/10.1046/j.1471-4159.2000.0750521.x
  21. Lee, C.S., Han, J.H., Jang, Y.Y., Song, J.H. and Han, E.S. (2002a). Differential effect of calecholamines and $MPP^+$ on membrane permeability in brain mitochondria and cell viabil- ity in PC12 cells. Neurochem. Int., 40, 361-369 https://doi.org/10.1016/S0197-0186(01)00069-9
  22. Lee, C.S., Lee, C.S., Ko, H.H., Song, J.H. and Han, E.S. (2002b). Effect of R-(-)-deprenyl and harmaline on dopamine- and per- oxynitrite-induced membrane permeability transition in brain mitochondria. Neurochem. Res., 27, 215-224 https://doi.org/10.1023/A:1014832520809
  23. Loew, G.H., Nienow, J., Lawson, J.A., Toll, L- and Uyeno, E.T. (1985). Theoretical structure-activity studies of $\beta$-carboline analogs. Requirements for benzodiazepine receptor affinity and antagonist activity. Mol. Pharmacol., 28, 17-31
  24. Lotharius, J., Dugan, L.L. and O'Malley, K.L. (1999). Distinct mechanisms underlie neurotoxin-mediated cell death in cul- tured dopaminergic neurons. J. Neurosci., 19, 1284-1293
  25. Maher, P. and Davis, J.B. (1996). The role of monoamine metab- olism in oxidative glutamate toxicity. Neuroscience, 16, 6394- 6401
  26. Offen, D., Ziv, I., Slemin, H., Melamed, E. and Hochman, A. (1996). Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkin- son's disease. Exp. Neurol, 141, 32-39 https://doi.org/10.1006/exnr.1996.0136
  27. O'Hearn, E. and Molliver, M.E. (1993). Degeneration of Purkinje cells in parasagittal zones of the cerebellar vermis after treat- ment with ibogaine or harmaline. Neuroscience, 55, 303-310 https://doi.org/10.1016/0306-4522(93)90500-F
  28. Olanow, C.W. and Tatton, W.G. (1999). Etiology and pathogene- sis of Parkinson's disease. Annu. Rev. Neurosci., 22, 123-144 https://doi.org/10.1146/annurev.neuro.22.1.123
  29. Reed, D.J. and Savage, M.K. (1996). Influence of metabolic inhibitors on mitochondrial permeability transition and glu- tathione status. Biochim. Biophys. Acta, 1275, 5-9 https://doi.org/10.1016/0005-2728(96)00041-2
  30. Rigobello, M.P., Callegaro, M.T., Barzon, E., Benetti, M. and Bindoli, A. (1998). Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of mem- brane permeability. Free Radic. Biol. Med., 24, 370-376 https://doi.org/10.1016/S0891-5849(97)00216-5
  31. Seaton, T.A., Cooper, J.M. and Schapira, A.H. (1997). Free radi- cal scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res., 777, 110-118 https://doi.org/10.1016/S0006-8993(97)01034-2
  32. Stokes, A.H., Hastings, T.G. and Vrana, K.E. (1999). Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res., 55, 659-665 https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C