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A Boundary Integral Approximation for Bending of Elastic Plates
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1. INTRODUCTION

The formulation of elastic plate bending
problem via boundary integral equations(BIEs) or
boundary element method furnishes the basis for
an alternative to finite difference and finite
element approaches to the numerical solution of
the
so—called direct method is based on a reciprocal

such problems. Conventional formulation,

work identity and has been used by Forbes and
Robinson 1969, Bezine and Gamby 1978, Stern
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1979 and others to construct a pair of boundary
integral equations involving the natural boundary
variables of displacement, normal slope, bending
moment, and equivalent shear on the boundary.
Central to these developments is the use of
special  singular called

"fundamental solutions” in the reciprocal work

auxiliary  function

identity to generate an analogue of "Green’s third
identity”. The resulting integral equations are
generally singular and must be interpreted in a
Cauchy principal value sense, which has some
unfavorable implications where the equations are

discretized for boundary element solution. There
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are several ways to proceed to regularization
reducing the strength of the singularities present
in BIEs. Du et. al. 198 suggested an exterior
integration fechm'que by placing the source points
outside the plate domain such that the field
points are never situated within the same
element. Tanaka 1991 constructed the discretized
slope BIE for higher order quadratic boundary
element whose behavior regularized up to the
integrable order by using the subtracting and
adding-back technique. The obtained BIEs,
accordingly are weakly singular and can be
integrated accurately by the standard Gaussian
quadrature formula.

The main purpose of the present investigation
is to formulate boundary integral equations for
bending of elastic platess A new direct
formulation is employed to obtain a displacement
BIE and a couple of slope BIEs which lead to
non-singular BIEs with consequent simplification
in the numerical treatment of these equations.
While the formulation of the method follows
closely in spirit the ideas outlined for thin elastic
plate bending analysis by Stern 1979 we are able
to introduce the two moment fundamental
solutions. We first summarized the reciprocal
work identity which is a basis for boundary
integral representation. Thereafter we introduce
the two fundamental solutions which have the
physically meaningful bending solutions, and then
three boundary integral equations representing the

displacement and normal slope on the plate
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boundary. Finally, a discretization scheme is
outlined for the numerical treatment of the BIEs,
and this is illustrated by solving the model
problems of concentrated load of square and

circular plates.

2. RECIPROCAL IDENTITY

We suppose that the middle surface of the
plate occupies a simply connected bounded region
S with total boundary C which is smooth
(continuously turning tangent) except possibly for
a finite number of comers which we denote
N, ..., 1, This is illustrated in Fig. 1 which also

contains some notation that we shall use
Without furnishing any details of the derivation
of classical thin plate theory(see e.g. Timoshenko
and Woinowsky-Krieger 1959) we note that the
deflection of middle surface, denoted w, is
governed by the equation

viw = ¢/Din S (D

where D= Er’/12(1—1%) is the plate stiffness
and q is the transverse load intensity. To Eq.(1)
is appended boundary conditions on C which
reflect the manner in which the plate is
supported on its boundary.

The direct development of boundary integral
representations rests on a generalized reciprocal

work identity associated with plate bending. We
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(Fig. 11 Plate region and related notation

recognize from the symmetric bilinear form
associated with the first variation of the strain
energy that interchanging the roles of u and w
leads to the same value for the reciprocal work,
and hence the identity.

J. [ Veow—m-28 4y,

— uWV(w)lds
+ 20U FG | w @
= U1 Fw) | a1,

= fS(DV Ywu— DV ‘uw)dS

The boundary operators V and M represent the
equivalent shear, and bending moment on the
boundary associated with the deflection function
w and the integral along the boundary tractions
in the displacement u and normal rotation du/dn.
Finally, the double bracket [ | F(w) |1, denotes
the jump in the twisting couple at the corner I,
which can be interpreted physically as a
concentrated force so that the summation
accounts for the reciprocal work of these corner
forces.

It will be convenient to introduce a polar

coordinate system on S with respect to which

these operators take the form.

_ Q(IZL’Q[ C0S28A | + Sin2BA @)

1+u ]
l—u
F= -Q(%l(sin%’& 1 — C082B4 ) 4)
d 2 __cosB _4_
V= anV [sm E r 30 (5)
cos@
+( +) aﬁ]F

where 7, 6, B are considered to be independent

variables and

or r 06
_9* 1.8 .1 3%
M=o (- ar T2 agz) (7N
_9 0 (1 9
AZ__2 67’(7’ 00) (8)

0 1.0 1 @
vi= + +7/2 9)

In Eqs.(3)-(9) the angle g is measured from the
extension of the radial line to the outward normal
as indicated in Fig. 1, and R is the radius of
curvature of the boundary, which is negative if
the corner of curvature is on the outward normal.
The sign conventions associated with the

physical quantities defined by these operators are
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also indicated in Fig. 1.

The region S and the functions w and u must
of course be sufficiently well behaved that the
terms in Eq(2) can be evaluated and the
integrals make sense. However, the boundary
integral representations that we seek are obtained
from Eq.(2) when the auxiliary function u is
singular in a particular way.

3. FUNDAMENTAL SOLUTIONS

A fundamental solution for plate bending is a
biharmonic function(and therefore a solution of
Eq.(1) for zero load intensity) which is singular
at a point P in the interior of S or on the
boundary C.

3.1 Fundamental Solution for a Boundary Point
If the singular point P is located on the
boundary C, then when we delete from S a
circular region of radius e. The boundary of the

remaining region S. now consists of the portion
of circular boundary C. contained in the interior

of S, and another component denoted C* which
consists of the original boundary C minus the
two portions of arc within a distance e on either
side of P. Again we have introduced two new
corners near P denoted /and [”.

There are two distinct kinds of fundamental

solution that we want to consider : a so—called
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concentrated force solution and a concentrated

moment  solution. A  concentrated  force
fundamental solution u; for P on the boundary

C has the following form

u;=ﬁ721nr (10)

for which W(«;) behaves like 1/r near the origin
with N, M), V; and F;® computed by
Eqs.(3)-(6).

The reciprocal work identity, Eq.(2), evaluated
on S. with #; as the auxiliary function then

produces a limiting result as the following
boundary integral equation.

crwl p et fC(V;w—M;N-f-N}M
—u;Vds (11)
N gl[ FiR 0 B pa)

= f Squ}dS

Since the constant C; depends only on the
auxiliary function #; and not on the particular

deflection function w, we can evaluate it by

considering a special solution, eg. w defined by

wlP

~
w

for which N, M, V and F* all vanish
identically, as does the corresponding load
intensity g = viw. For this special case,
Eq.(11) reduces to
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C;w) p+fc*V'} w) p ds=0

so that we can rewrite Eq.(11) for the general

case in the form

[ Vi w=w! )~ N+ NM— i Vids
+ B FP P —w | - PF®) (1)
= fsqu}ds

Thus, the single-valued concentrated force
fundamental solution is also one that yields a
nonsingular boundary integral in Eq.(12) when
we disregard the principal value designation.

It remains to identify suitable concentrated
moment fundamental solutions. It appears that we
want to consider biharmonic functions u(r, ) for
which rV(u) and M(u) behave like 1/r near the
origin. We introduce the two additional singular

functions

w, = Our _ H1+2In¥) (13)
= G, 87rD a ",

', =% _ A1+2InH-2L (14)
™= a8, 87rD atp

then we find M,, V. M, and V.

Without sacrificing generality we can orient the
coordinate system associated with P at any
particular boundary point by taking the x axis
along the inward normal at a regular boundary
point(where the tangent turns continuously) or

along the inward bisector of the angle between

.

[Fig. 21 Orientation of local coordinate system

the tangent lines at a comer with included angle
26, as illustrated in Fig. 2. Now if P is a

regular point of the boundary then

NI ,=—-1 p (15)

and therefore we can get the moment boundary
integral  equation  corresponding to  the

fundamental solution 27, in the form

fc {(Vwlw—w| ,+ NI, rcos6)
~M,[N+N|, cos(6+ B)]
+ N M—u", V }ds (16)
n gl{ FPlw® |,
+N| , (rcosd) | ,k]—u*(k)F(k)}
= JLaundS

Note that we have dropped the principal value
indication from the boundary integral Eq.(16)
since for the particular fundamental solution
the integral converges in the ordinary sense.

If Pis in fact a corner point then there are
two distinct limiting normal slopes at P as

depicted in Fig. 3 and we have

A7) E 82 A5 24520029 129)/ 61
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LNl + V1) = —%]p sin6, (17)
9
—%—( N| p- — N| p) = ——ﬁlp cosfd, (18)

For this case we use both «%, andu’, which

leads to the independent corner moment boundary

integral equations

[ (Vulw—wl 4 (N 4N ,)

rcos 0
oo | MWIN+ (V] N )

M]ﬁ-N‘mM—um,V}ds

F PPl W,
_rcos g W PR
N1 ,) g2 |] Ja }
= fsqu A
[ (Vlw—wl + W =N ,)
S [N+N ] =N )
Sln§0+§ ok
2cos ]+N’”ZM usz}ds (20)
+ ZI{F*,&f’[w“ﬂ—w oy
rsin @ w P E®
») 2c0560| ] 23 }
= Lqumzds

where the asterisk on the summation indicates
that the origin corner is not included. We note
that if the comer is almost a straight angle(ie.
6—n/2) then N| ,» and NI,

equal and FEq.(19)—Eq.(16) while Eq.(20) becomes

indeterminate.

are nearly
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[Fig. 3] Directional derivatives and normal slopes at
a corner

4. NUMERICAL TREATMENT

We summarise here our formulation of plate

-bending problems. We suppose that we are given

geometrical data defining the region occupied by
the plate’s middle surface and its boundary. The
primary variables of the problem are then the
deflection w, the normal slope N, the bending
moment M, the equivalent shear V at each point
of the boundary and the corner forces F® at
each boundary corner, produced by a prescribed
loading. We also note that at each comer there
are two distinct limiting values of N, M and V.
Boundary conditions defining the nature of the
support(or lack of it) at each point of the plate
boundary furnish two relations involving w, N, M
and V at that point. The two additional relations
needed are the functional equations given by

Eq.(12)(but  without the principal value
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designation on the boundary integral) and Eq.(16).
In the special case that the point P is a corner
point we replace Eq.(16) with two independent
relations given by Egs.(19) and (20). Thus the
problem is reduced to finding a solution of the
boundary integral equations(in particular, Eqs.(12)
and (16) for P a regular boundary point, and
Egs.(12), (19), (20) at each corner) consistent
with prescribed boundary conditions. To proceed
numerically we replace the continuous problem
with a discrete one. Again, there are many
different approaches to how this is done; we
outline here a fairly direct formulation of the

numerical problem which yields good results.

4.1 Discretization

There are two different types of variable that
are discretized
defining the boundary of the plate, and the

the geometrical variables

primary varables of the problem. The geometrical
data are generally known to any desired degree
of accuracy whereas the only a priori data on the
primary variables are fumished by houndary
conditions. We may therefore choose to
approximate the boundary geometry and the
primary variables independently. The entire
boundary is first decomposed into smooth
components between corners. If the component is
a straight line or an arc of a circle, then it is
easily specified by the end points and, if
necessary, a center of curvature. For more

complex shapes we would need to furnish

additional data, but in any event it is desirable to
define each component of the boundary smoothly
enough that the normal and curvature are
continuous since these enter the calculations
directly.

Each component is then partitioned into
segments(elements) and on each we identify two
nodal points. The segments are now numbered

consecutively, say E; to E g, as are the nodal

" points from 1 to Np. This is shown in Fig4 .

The nodal number of each comer node must be
noted for special treatment as there are twice as
many variables at a corner node as at a regular
node: On the boundary element, the Gauss rule is
used to select integration points and associated

weights.

4.2 Boundary Conditions
The boundary conditions on each component of
the boundary are applied at the nodal points and

interpolated linearly on each element. At each

[Fig. 4] Plate geometry and element division
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regular nodal point there are four nodal variables
introduced: deflection, normal slope, moment and
shear.

We identify two nodal variables and their
values as specified by boundary data, and the
remaining two variables join the list of
unknowns. Note that associated with each regular
node as origin there will be two boundary
integral equations.

At each of the K comer nodes(common to two
adjacent components of the boundary) there are
eight nodal variables introduced: deflection and
comer force, and two limiting values each of
normal slope, moment and shear. There are three
independent  boundary integral equations
associated with each comner so that five boundary
conditions are needed. If the comer is free then
the comer force, both limiting values of moment
and both limiting values of shear vanish. If,
however, the deflection is restrained then we
must generally appeal to a knowledge of the
asymptotic behavior of the solution near the
cormer. For example, if the comer is clamped
along both boundaries then the curvature in
every direction must vanishes; so in addition to
the vanishing of the deflection and both normal
slopes we also prescribe zero limiting bending
moments. Similarly, if the comer is simply
supported on both sides then shear in every
direction must vanish; hence the five boundary
conditions for this case are prescribed. In any

event, at the conclusion of specifying boundary
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conditions we know the values of two variables
at each regular node and five at each corner,
leaving as unknown in the problem two variables
at each regular node and three at each comer.
We also associate two boundary integral
equations with each regular node(as origin) and
three boundary integral equations with each

corner.

4.3 Concentrated Load Examples

Numerical results for simply supported and
clamped square plates subjected to a concentrated
load at the center are given in Figs. 5 and 6.
The plots are for half of one edge and values are
indicated for one, two and four elements per side
using siXx integration points per element.
Convergence appears to be fairly rapid and
acceptable results are obtained for relatively
coarse meshes. All cases are for Poisson's ratio
of 0.3. As a final example we look at a clamped
circular plate subjected to an off-center
concentrated load; the results for uniform meshes
are plotted in Fig. 7. As before, convergence
appears to be rapid and the results are quite
good for such coarse meshes. In many boundary
integral equation codes dealing with singular
equations, abrupt changes in mesh size should be
avoided unless very elaborate procedures are
instituted to evaluate principal value integrals
over neighboring elements. In the present non
singular formulation this is not a problem, as
indicated by the results in Fig. 8
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