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Product of Irreducible Characters

Department of Mathematics, Hanyang University Moon—-ok Wang

Abstract

In this paper we prove that the property of product irreducible characters that is ,if
plrr(H) and <Irr(K) are faithful, then $X 8 is faithful if and only if |Z(H)]
and |Z(K)| are relative primes where G=HxK.

0. Introductions

Character theory provide a powerful tool for proving theorems about finite groups.
Complex representations and their characters were first studied nearly one hundred

vears ago by Frobenius and his theorem on transitive permutation groups was the first

major achievement of the theory; it remains to this day, along with Burnsides p ‘g’
theorem, one of the highlights of any first course on character theory.

Burnside theory is very pretty and very useful. This theorem was proved in early
yvears of 20 century as an application of the character theory of finite groups. The
original proof of Burnside is very short and clear.

In the first edition of his book "Theory of groups of finite order” (1897), Burnside
presented group theoretic argument which proved the theorem for many special choice
of the integers a,b but it was only after studying Frobenius’ new theory of group
representations that he was able to prove the theorem in general. Indeed, many later
attempts to find a proof which does not use character theory were unsuccessful, until
such a character-free proof was finally obtained by the combined works of Thompson,
(voldschmidt, Bender, and Matsuyama. Frobenius theorem remains untouched by
noncharacter-theoretic methods.

Both of these results may be regarded as non-simplicity criteria. The study and

application of character theory, since Brauer proposed a systematic program to classify
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the finite simple groups at the Amsterdam International Congress in 1954, -can not be
divorced from the classification itself. Although purely group theoretic methods have
dominated the major part of that work which took place between 1970 and 1980, the.
classification could never have been carried out without the early progress using
character theory. The reason for this is quite simple.

Character theory provides a means of applying ring theoretic techniques to the study
of finite groups. Although much of the theory can be developed in other ways, it seams
more natural to approach character via ring or more accurately, algebra.

Let G be a finite group and let Cbe the set of complex numbers. A C -representation
of G is a homomorphism T G—GL(n, C) for some integer n where GL(%n, C) is the
general linear group of nonsingular #X#n matrices over C. The integer #» is the
degree of T. Two representations 7,S of degree n are similar if there exists a
nonsingular #X#n matrix P, such that (@ =P 'S(@P for all geG A
representation 7(g) is said to be reducible if 7(g) is similar to the form

0 Ty(g)
called irreducible. Let T be an C -representation of G. Then the C-character x of G
afforded by 7T is the function given by x(g) = #T(g) {trace of 7T(g)). Note that

( T(e) Tye) ), (g=G) where T{g) is representation of G. Otherwise 7(g) is

x(1)=deg T and characters of degree 1 are called linear characters. Note that
gekerT iff x(g) =x(1) [7]. Thus kerx={geG| x(g)= x(1)} is defined. A character
x of G is said to be faithful if kerx=1. Throughout this paper, a group G is finite

and the characters of G are complex characters. Let Ir{(G) be the set of all
irreducible complex characters. In this paper, we prove that the property of product of
two irreducible faithful characters(Theorem 7).

2. Preliminaries and main result

Lemma 1. Let G be a finite group and let x be the C-representation T of G
afforded by C -representation T of G. If for geG, n=o0(g), the order of g, then
(a) T(g) is similar to diagonal matrix diag(e,, €y

(b) E,‘n= 1
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(©) x(g)=2l; and | I<x(1)
@ »g™H=xg

Proof. The restriction of T to the cyclic group <g> is a representation of <g> and
hence it is no loss to assume G=<g>. By Maschkes Theorem, it follow that 7 is
similar to a representation in block diagonal form, with irreducible representations of G
appearing on the diagonal blocks. Since G&=<{g> is abelian this irreducible
representations have degree 1, and thus 7 is similar to a diagonal represenation. Now
(a) follows, and we may assume that 7 is diagonal.

We define I= T(g")= T(g)" = diag(e}, -, ef). Therefore (b) is proved. It follows
that lej=1 and |2Zel<lel=sf=x(1). It is clear that xg) = Die; so that (c)

follows. Now T(g™!)= T(g)~'= diag(el, o e7Y) so that (g ') =2le”. Since

led=1, we have &;'= &; and xg )= x(g). The proof is complete.

Definition 2. Let x be a character of G. Then Z(x) ={geG|lx2)l= (1)} is called

the center of y.

Lemma 3. Let x be a character afforded by a C -representation T of G. Then
(@ Z(x)={g=G| T(g) = &l forsome e= C}
(b) Z(x) is a subgroup of G.
(€) xzp=2{1)A for some linear character A of Z(x)
(@) Z(x)/kery is cyclic
(e) Z(x)/kerx<Z(G/kery) : central
Furthermore, if yeIr{G), then
® Z(0/kerx= Z(G/kerx)

Proof. By Lemmal, 7(g) is similar to diag(e;, -, &) with lej=1, 1<i<f Since
1) =2le, it follows that |xd@l=f iff all ¢; are equal. Since the onlyy matrix

similar to &l is &/ itself, conclusion (a) follows. Define the function AZ(x)—C by
T2) =2 for z€Z(y). 1t follows for z,weZ(y) that T{zw)= A(2)A(w)] and hence
Z(x) is a subgroup and A is a homomorphism(linear character) of Z(x). We have that
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22)=x(1)A(z) of g=Z(x) and (b) and (c) have been proved. Clearly kerx= kerA
and thus Z(x)/kery is isomorphic to the image of A, a finite multiplicative subgroup of
the field C. This subgroup is necessarily cyclic and (d) follows. Also, kery=ker T
and T(Zx))SZ(T(G)) and (e) is an immediate consequence. Finally, if
glkerp)eZ(G/kery), then T(@eZ(T(G)). If x=Ir{G), then we conclude that
T(G) = el for some e=C. Now (f) follows from (a) and the proof is complete.

Lemma 4. Let y=Ir{G) and z€2Z(x). Then
(a) ;c(gz)=ex(g),E=-§((%l for geG

(b) x(2™)=€"x(1) for integer =.

Proof. (a) By Lemma3, we have x(2)=trT(2) = tre[=ne= x(1)e and
xg2)=trT(gz) = trT(g) - T(2) = trIg) - el= treT(g) = x(2).

Hence x(gz)= ex(g) and s=-§%.

(b) We prove induction on #. Assume it holds for z—1, that is, x(z D =e""%(1).
Then by (a) we have x(z™) = x(z" 2)=ex(z2" ") = &"x(1). The proof is complete.

Definition 5. Let G=HXK and let ¢ and @ be the characters of H and K,
respectively. Define x= ¢x 8 by x(hk)= ¢(h)0(k) for heH and kEK.

Under the isomorphism H=G/K, there is a corresponding character ¢ of G with
K<Sker'¢ and @ (hk)= ¢(k). Similarly, there is a corresponding character 8 of G
with @ (hk)= 6(k). 1t follows that $x = @ @ is a character of G.

Proposition 6. Let G= HXK. Then character ¢x @ for ¢=Irr{H) and flrrH{K) are

exactly the irreducible characters of G.

Proof. Let ¢,¢IEI7’7"(H) and 0, 01517’7([{) Let x=¢><0 and xl=¢lx 61, then

(=" 2x&) 1@

- l_HlH_f{T hegﬁxm)e(k) 6,(B) (R
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P CEAC) 6 W ORAC)
=[¢, ¢,106, 6,1
It follows that the ¢X @ are all distinct and irreducible. Now

s (B} OWY = 2 s =(, 3 s, 3, 6D

o I K) 6 I )
=|H[|Kl =G
and thus the ¢X @ are all of A G).

Theoerm 7. Let G‘= HxK. Let ¢=lrr(H) and 0=Drr(K) be faithful. Then ¢X 8 is
faithful if and only if |Z(H)| and |Z(K)| are relatively primes.

Proof. Since ¢€lrr(H), 8=Irr(K) and ¢, 8 are faithful, by Lemma2, we have

Z(p)=2Z(H) and Z(6)=Z(K) and by proposition 6, ¢x0=l1{G). Suppose that
|Z(H)| and |Z(K)| are relatively prime. Then we want ker(¢x @) ={(1,1)}. Let
(h, k) =ker(¢x6). So ¢(h)O(k)=¢(1)6(1). Taking modulus we get (%) (6]
=¢(1)6(1). Now by Lemma 1, &(B)<¢(l) and 6(K<6(1). Multiplying these
relations, then @(h)O(R)<$(1)8(1). The equality holds wherever |¢(h)|=#(1) and
|6(R)l = 6(1). Thus heZ(¢) and k=Z(6) and so o(%) and o(k) are relatively prime.
On the other hand, A=Z(¢) implies ¢(4)=¢¢(1), where &, is a o(h)th-root of
unity. Similarly 6(k) = &,0(1), where &, is a o(k)th-root of unity. It follows that

$(M)O(R) = e16,8(1)6(1). So €69=1. It follows that &, =¢;' is both o(kh)th and
o(k)th-root of unity. Thus since o(kh) and o(k) are relatively prime, we have
€;=¢&;=1. Hence ¢(%)=¢(1) and 6(k)=6(1) that is hekerp and kekerd. But ¢
and @ are faithful, so =1 and k=1.

Conversely, assume that ¢X @ is faithful and we want that Z(¢) and Z(8) are
relatively prime. If not, then there is a prime p with p/|Z($)| and p/|Z(6)|. Thus
there are heZ(¢),k=Z(0) both of order p. As before @(h)=ep(1) and (k)= 66(1)
for some ¢,d roots of unity of order p. Note that o(k) = o(k)=p implies a+1, b+1
and by faithfulness e#1 and d&+1. Since & and ¢ are roots of unity, there is # such
that "= ! and note that p4 n.

By Lemma 4, it follows that ¢(4")=¢e"$(1)=06"'¢(1) with A"+1 since p+x So
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we have (@xO)(h", B) = ¢(h™ (R = 6"14(1)86(1) = ¢(1)6(1) = (#x 6)(1, 1).

Thus (A", keker(¢x 8 and (A",R+(1,1) which contradicts the faithfulness of

X 0. Therefore |Z(@)} and |Z(6)| are relatively prime. The proof is complete.
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