DOI QR코드

DOI QR Code

흰쥐 삼차신경절 뉴론의 이온통로의 분포에 관한 연구

Distribution of ion channels in trigeminal ganglion neuron of rat

  • 김애경 (경희대학교 치과대학 보존학교실) ;
  • 최경규 (경희대학교 치과대학 보존학교실) ;
  • 최호영 (경희대학교 치과대학 보존학교실)
  • Kim, Ae-Kyung (Department of Conservative Dentistry, College of Dentistry, Kyung Hee University) ;
  • Choi, Kyoung-Kyu (Department of Conservative Dentistry, College of Dentistry, Kyung Hee University) ;
  • Choi, Ho-Young (Department of Conservative Dentistry, College of Dentistry, Kyung Hee University)
  • 발행 : 2002.09.01

초록

삼차신경은 구강악안면영역의 운동 및 감각을 담당하고 있으므로 치과임상에서 매우 중요하다. 삼차신경근 중 삼차신경절에 세포체를 갖는 뉴론은 주로 체성 감각을 전달하는 1차 구심신경으로 악안면영역의 촉각, 압각, 진동감각 온도각 및 통각을 담당한다. 이러한 감각의 전달은 기본적으로 신경세포의 이온통로의 활동에 의존하는데 삼차신경절 세포에 여러 종류의 이온통로가 존재하는 것으로 알려져 있다. 본 연구에서는 항체 염색법을 이용하여 이온통로가 존재를 확인 하고자 한다. 횐쥐의 삼차신경절로부터 통법에 따라 뉴론을 단일 세포로 분리하고 immunocytochemistry 방법으로 세포를 염색하여 관찰한 바 다음과 같은 결과를 얻었다. 본 실험에서 이온전류의 측정 등으로 관찰된 여러 종류의 이온통로들을 면역 염색법으로 확인하였다. 횐쥐의 삼차신경절 뉴론에서 확인된 이온통로는 소디움통로와 N, P 및 Q-type의 칼슘통로 그리고 BK$_{Ca}$, Kv 4.2 및 Kir 2.1 등의 포타슘통로이었으며 이온통로의 종류에 따라 분포에 차이를 나타내었다.

키워드

참고문헌

  1. Ahlijanian, M. K., Westenbroek, R. E., AND Catterall, W. A. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian btain. spinal cord, and retina. Neuron, 4 : 819-832, 1990 https://doi.org/10.1016/0896-6273(90)90135-3
  2. Akopian A. N., Sivilotti L., and Wood J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379: 257-262, 1996 https://doi.org/10.1038/379257a0
  3. Alonso, G., AND Widmer, H., Clustering of Kv4.2 potassium channels in Phostsy
  4. Barry, D. M., Xu, H., Schuessler, R. B., AND Nerbonne, J. M. Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circ Res. 83: 560-567, 1998 https://doi.org/10.1161/01.RES.83.5.560
  5. Bean. B. P. Classes of calcium channels in vertebrate cells. Annu Rev. Physiol. 51 : 367-384, 1989 https://doi.org/10.1146/annurev.ph.51.030189.002055
  6. Bignami A. Neuron-Glia Interrelations During Phylogeny. I. Phylogeny and Ontogeny of Glial Cells. New Jersey : Humanna, 3-39, 1995
  7. Bossu J. -L. and Feltz A. Patch-clamp study of the tetrodotoxin-resistant sodium current in group C sensory neurones. Neurosci.Lett. 51: 241-246. 1984 https://doi.org/10.1016/0304-3940(84)90558-5
  8. Brew H. Gray PT. Mobbs P, AND Attwell D. Endfeet of retinal glial cells have higher densities of ion channels that mediate $K^+$ buffering. Nature 324 : 466-468, 1986 https://doi.org/10.1038/324466a0
  9. Brismar T AND Collins VP. Inward rectifying potassium channels in human malignant glioma cells. Brain Res, 480: 249-258, 1989 https://doi.org/10.1016/0006-8993(89)90190-X
  10. Caffrey J. M., Eng D. L., Black J. A., Waxman S. G., and Kocsis J. D. Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res. 592: 283-297, 1992 https://doi.org/10.1016/0006-8993(92)91687-A
  11. Choi D. W. Calcium-mediated neurotoxicity : relationship to specific channel types and role in ischemic damage. Trends in Neurosciences 11: 465-469, 1988 https://doi.org/10.1016/0166-2236(88)90200-7
  12. Clapham, D. E. Calcium signaling. Cell, 259 : 268, 1995
  13. Cohen S. A. and Barchi R. L. Voltage-dependent sodium channels. Int. Rev. Cytol.137: 55-103, 1993
  14. Cohen, M. W., Jones, O. T., AND Angelides, K. J. Distribution of $Ca^{2+}$ channels on frog motor nerve terminals revealed by fluorescent $\omega$-conotoxin. J. Neurosci. 11: 1032-1039, 1991
  15. Cooper, K.. Rae, J. L., AND Deway. J. Inwardly rectifying potassium current in mammalian lens epithelial cells. Am J Physiol. 261 : C115-23
  16. Doughty. J. M., Barnes-Davies, M., Rusznak, Z., Harasztosi, C.. AND Forsythe, I. D. Constructing $Ca^{2+}$ channel subtypes at cell bodies and synaptic terminals of rat anterioventral cochlear bushy neurons. J. Physiol. 512 : 365-376, 1998 https://doi.org/10.1111/j.1469-7793.1998.365be.x
  17. Dunlap, K., Luebke, J. I., AND Turner. T. J. Exocytotic $Ca^{2+}$ channels in mammalian central neurons. Trends Neurosci. 18 : 89-98, 1995 https://doi.org/10.1016/0166-2236(95)93882-X
  18. Elliott A. A. and Elliott J. R. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J. Physiol. (London) 463: 39-56, 1993 https://doi.org/10.1113/jphysiol.1993.sp019583
  19. Fedulova S. A., Kostyuk P. G., and Veselovsky N. S. Ionic mechanisms of electrical excitability in rat sensory neurons during postnatal ontogenesis. Neuroscience 41: 303-309, 1991 https://doi.org/10.1016/0306-4522(91)90219-E
  20. Harper, A. A. and Lawson, S. N. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J. Physiol. (London) 359: 31-46, 1985a https://doi.org/10.1113/jphysiol.1985.sp015573
  21. Harper, A. A. and Lawson, S. N. Electrical properties of rat dorsal root ganglion neurons with different peripheral nerve conduction velocities. J. Physiol. (London) 359: 47-63. 1985b https://doi.org/10.1113/jphysiol.1985.sp015574
  22. Haydon, P. G., Henderson. E., AND Stanley, E. Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron, 13 : 1275-1280 https://doi.org/10.1016/0896-6273(94)90414-6
  23. Hille. B. Ionic channels of Excitable Membranes, Sinauer, Sunderland, MA. 1992
  24. Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer, S. A., Miller R. J. and Tsien R. W. Dominant role of N-type $Ca^{2+}$ channels in evoked release of norepinephrine from sympathetic neurons. Science 239: 57-61, 1988 https://doi.org/10.1126/science.2447647
  25. Hodgkin. A. L., AND A. F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. Lond. 116 : 449-472, 1952 https://doi.org/10.1113/jphysiol.1952.sp004717
  26. Hoffman, D. A., Magee, J. C., Colbert, C. M., AND Johnston, D. $K^+$ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387 : 869-875, 1997 https://doi.org/10.1038/43119
  27. Holz G. G., Dunlap K. and Kream R. M. Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons : methods and dihydropyridine sensitivity. Journal of Neuroscience 8: 463-471, 1988
  28. Ishii M, Horio. Y., Tada, Y., Hibino. H., Inanobe. A., Ito, M., Yamada, M., Gotow, T., Uchiyama, Y., AND Kurachi Y. Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Muller cell membrane : the regulation by insulin and laminin signals. J Neurosci 17 : 7725-7735, 1997
  29. Jan, L. Y. AND Jan, Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 20 : 91-123, 1997 https://doi.org/10.1146/annurev.neuro.20.1.91
  30. Josephson, I. R. Properties of inwardly rectifying $K^+$ channels in venricular myocytes. Mol Cell Biochem. 80 : 21-26, 1988
  31. Kaczorowski, G. J.. Knaus, H. G., Leonard, R. J., Mcmanus. O. B. AND Garcia, M. L. High- conductance calcium-activated potassium channels : structure, pharmacology, and function. J Bioenerg Biomembr. 28 : 255-267, 1996 https://doi.org/10.1007/BF02110699
  32. KOSTYUK P. G., VESELOVSKY N. S., FEDULOVA S. A., AND TSYNDRENKO A. Y. Ionic currents in the somatic membrane of rat dorsal root ganglion neurons - I. Sodium currents. Neuroscience 6: 2423-2430, 1981 https://doi.org/10.1016/0306-4522(81)90088-9
  33. Kusaks, S., AND Puro, D. G. Intracellular AYP activates inwardly rectifying $K^+$ channels in human and monkey retinal Muller (glial) cells. J Physiol (Lond) 500 : 593-604, 1997 https://doi.org/10.1113/jphysiol.1997.sp022045
  34. Llinas, R. ET AL. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FIX) from the funnel web spider poison. Proc Natl Acad Sci. USA. 86 : 1689-1693, 1989 https://doi.org/10.1073/pnas.86.5.1689
  35. Maletic-Savatic, M., Lenn. N. J.. AND TRIMMER, J. S. Differential spatiotemporal expression of $K^+$ channel polypeptides in rat hippocampal neurons developing in situ and in vitro. J Neurosci. 15 : 3840-3851
  36. Marty, A. The physiological role of calcium- dependent channels. Trends Neurosci. 12 : 420-424, 1989 https://doi.org/10.1016/0166-2236(89)90090-8
  37. McCleskey, E. W. Calcium channels : Celluar roles and molecular mechanisms. Curr Opin Neurobiol. 4 : 304-312, 1994 https://doi.org/10.1016/0959-4388(94)90090-6
  38. Mclarnon J.G. AND Kim S.U. Existence of inward potassium currents in adult human oligodendrocytes. Neurosci Lett 101 : 107-112, 1989 https://doi.org/10.1016/0304-3940(89)90449-7
  39. McLean M. J., Bennet P. B., and Thomas R. M. Subtypes of dorsal root ganglion neurons based on different inward currents as measured by whole cell voltage clamp. Molec. Cell. Biochem. 80: 94-107, 1988
  40. Miller. R. J. Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J. 4 : 3291-3299, 1990
  41. Mills, L. R., Niesen, C. E., So, A. P., Carlen. P. L., Spigelman, I. , AND Jones, O. T. N-type $Ca^{2+}$ channels are located on somata. dendrites and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J. Neurosci. 14 : 6815-6824, 1994
  42. Mintz, I. ET AL. P type calcium channels in rat central and peripheral neurons. Neuron. 9 : 85-95, 1992 https://doi.org/10.1016/0896-6273(92)90223-Z
  43. Nelson, M. T., Cheng. H., Rubart, M., Santana, L. F.. Bonev, A. D., Knot. H. J. AND Lederer, W. J. Relaxation of arterial smooth muscle by calcium sparks. Science, 270 : 633-637. 1995 https://doi.org/10.1126/science.270.5236.633
  44. Newman E.A. Inward-rectifying potassium channels in retinal glial (Muller) cells. J Neurosci 13 : 3333-3345, 1993
  45. Nilius B., Schwarz, G.. AND Droogmans. G. Modulation by histamine of an inwardly rectifying potassium channel in huma endotherial cells. J Physiol. 472 : 359-371, 1993 https://doi.org/10.1113/jphysiol.1993.sp019951
  46. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693-698, 1984 https://doi.org/10.1038/308693a0
  47. Ogata N. and Tatebayashi H. Kinetic analysis of two types of $Na^+$ channels in rat dorsal root ganglia. J. Physiol. (London) 466: 9-37. 1993
  48. Ogata N. and Tatebayashi H. Ontogenic development of the TTX-sensitive and TTX-insensitive $Na^+$ channels in neurons of the rat dorsal root ganglia. Dev. Brain Res. 65: 93-100, 1992a https://doi.org/10.1016/0165-3806(92)90012-L
  49. Ogata N. and Tatebayashi H. Slow inactivation of tetrodotoxin-insensitive $Na^+$ channels in neurons of rat dorsal root ganglia. J. Membr. BioI. 129: 71-80, 1992b
  50. Perney T. M., Hirning L. D., Leeman S. E. and Miller R. J. Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proceedings of the National Academy of Sciences of the USA 83: 6656-6659, 1986 https://doi.org/10.1073/pnas.83.17.6656
  51. Puil E., Gimbarzevsky B., and Miura R.M. Quantification of membrane properties of trigeminal root gangion neurons in guinea pigs. J. Neurophysioi. 55: 995-1016. 1986
  52. Randall, A. AND Tsien, R. Pharmacological dissection of multiple types of calcium channel currents in rat cerebellar granule neurons. J Neurosci. 15(4) : 2995-3012, 1992
  53. Regehr, W. G., Mintz, I. M. Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron, 12 : 605-613 https://doi.org/10.1016/0896-6273(94)90216-X
  54. Robitaille, R., Adler, E. M., AND Charlton, M. P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapes. Neuron. 5 : 773-779, 1990 https://doi.org/10.1016/0896-6273(90)90336-E
  55. Roy M. L. and Narahashi T. Differential properties of tetrodotoxin-sensitive and tetrodotoxin -resistant sodium channels in rat dorsal root ganglion neurons. J. Neurosci. 12: 2104-2111, 1992
  56. Schwartz A., Palti Y.. and Meiri H. Structural and developmental differences between three types of Na channels in dorsal root ganglion cells of newborn rats. J. Membr. BioI. 116: 117-128, 1990 https://doi.org/10.1007/BF01868670
  57. Serodio, P., Vega-Saenz De Miera, E., AND Rudy, B. Cloning of a novel component of A-type $K^+$ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol. 75 : 2174-2179
  58. SHENG. M., TSAUR, M. I.. JAN, Y. N.. AND L. Y. Subcellular segregation of two A-type $K^+$ channel proteins in rat central neurons. Neuron, 2 : 271-284, 1992
  59. SILVER, M. R. AND DECOURSEY, T. E. Intinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal $Mg^{2+}$. J Gen Physiol. 96 : 109-133, 1990 https://doi.org/10.1085/jgp.96.1.109
  60. SONG, W. J., TKATCH, T., BARANAUSKAS, G., ICHINOHE, N., KITAI, S. T., AND SURMEIER, D. J. Somatodenditic depolarization- activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv 4.1 subunits. J Neurosci. 18 : 3124-3137, 1998
  61. STANLEY, E. F. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 20 : 404-409, 1997 https://doi.org/10.1016/S0166-2236(97)01091-6
  62. TKATCH, T., BARANAUSKAS, G., AND SURMERIER, D. J. Kv4.2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons. J Neurosci. 20 : 579-588, 2000
  63. TORRI-TARELLI, F.. PASSAFARO, M., CLEMENTI. F.. AND SHER, M. Presynaptic localization of omega-conotoxin-sensitive calcium channels at the frog neuromuscular junction. Brain Res. 547 : 331-334, 1991 https://doi.org/10.1016/0006-8993(91)90981-Z
  64. TSIEN. R. W.. LIPSCOMBE. D., MANDlSON, D. V., BLEY, K. AND FOX, A. Reflections on $Ca^{2+}$ channel diversity, 1984-1994. Trends Neurosci. 18 : 52-54, 1995 https://doi.org/10.1016/0166-2236(95)93867-W
  65. TSIEN. R. W.. LIPSCOMBLE, D., MANDlSON, D. V., BLEY, K., AND FOX. A. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11 : 431-438, 1988 https://doi.org/10.1016/0166-2236(88)90194-4
  66. VERGARA, C., LATORRE, R., MARRION, N. V., AND ADELMAN. J. P. Calcium-activated potassium channels. Curr Opin Neurobiol. 8 : 321-329, 1998 https://doi.org/10.1016/S0959-4388(98)80056-1
  67. WESTENBROEK, R. E., AHLIJANIAN, M. K., AND CATTERALL, W. A. Clustering of L-type $Ca^{2+}$ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 347 : 281-284, 1990 https://doi.org/10.1038/347281a0
  68. WESTENBROEK, R. E.. SAKURAI, T.. ELLIOT. E. M., ET AL. Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci, 15 : 6403-6418, 1995
  69. Wong R. K. S. and Prince D. A. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Research 159: 385-390, 1978 https://doi.org/10.1016/0006-8993(78)90544-9
  70. WU, L. G.. WESTENBROEK, R. E., BORST, J. G. G., CATTERAL, W. A., AND SAKMANN, B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci. 19 : 726-736, 1999