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Abstract. The traditional methods of evaluating the performance of a
network by enumerating all possible states may quickly become compu-
tationally prohibitive, since the number of states grows exponentially as
the number of components increases. In such cases, enumerating only
the most probable states would provide a good approximation. In this
paper, we propose a method which efficiently generates upper and lower
bounds for coherent performance measures utilizing the most probable
states. Compared with Yang and Kubat’s method, our procedure signifi-
cantly reduces the complexity and memory requirement per iteration for
computing the bounds and thereby, achieves the given degree of accuracy
or the coverage within a shorter time.
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1. INTRODUCTION

A network is represented by a probabilistic graph G(V, E), which consists of a
set V of nodes and a set E of links. Each link of the network may have different
flow capacity. Each link of the network either operates or fails with known probabil-
ity. The network is required to transmit a specified amount of flow from the source
node to the terminal node, and the maximum amount of network flow which can be
transmitted from the source node to the terminal node is called the maximum flow
of the network. The number of possible states of a flow network with n links is 2"
and, due to the large size of state space even for a network of moderate size, the
evaluation of network performance by enumerating all possible network states would
seem impractical for a network with a large number of links. Li and Silvester(1984)
suggest a method which considers only m most probable states which guarantee a
certain coverage of the state space. Since these states of high probability account
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for a large fraction of the total probability, this approach is considered effective in
practice. However, Li and Silvester’s algorithm lacks flexibility in generating most
probable states for computing the bounds, since if the number of most probable
states to be generated is changed, the whole process must start again from its first
step. The method of Li and Silvester is improved by Lam and Li(1986) , Shier(1988),
and Gomes and Craveririnha(1998) in efficiency and flexibility. Lam and Li’s algo-
rithm generates the candidate states of most probable states, stores them in heap
and then obtain the current most probable states one by one in decreasing order of
state probability. Shier’s method-suggests to enumerate the most probable states
one by one from a smaller group of candidate states. The method of Gomes and
Craveririnha enumerates the most probable states from the candidate states stored
in heap using successive order.

Notations
pj(% <p; <1) probability that link j operates (5 = 1,2,---,n)
g =1-p; probability that link j fails (j = 1,2,---,n)

S; = {i1,i9,- ik} set of failed links in 7th MPS (i = 1,---,2")
where 1 <k<n, 1 <ix <n(i) <iz < - <ig)

SP = {i1,49,-++,ig—1} set S; with element i), deleted

P(S;) probability of S;

Sf set of reduced states of \S;

PL(S; probability of S

R(S:)(R(SH)) flow in S;(flow in SF)

U(i) upper bound at ith iteration

L(1) lower bound at ¢th iteration

R performance measurement of network(performability)
(example : expected maximum flow)

a = R(S)) maximal value of R(S;) (1 =1,---,2")

B = R(San) minimal value of R(S;) (1 =1,---,2")

Given a state S, the probability of S, P(S), is given by
n
P(S) =[[pf ¢~
i=1
and the states S;, ¢ = 1, 2, ---, 27, are arranged in decreasing order as

P(S1) 2 P(S2) 2 -+ > P(San).

Clearly, the most probable state in the whole state space is S| = ¢ with P(S)) =
n n
Hpi, and the next most probable state is So = {1} with P(S;) = qlnpi. Simi-

=1 =2
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larly, the least most probable state is Son = {1,2,---,n} with P(Sn) qu
performance measure, R say, satisfies a coherence property if
R(S;) > R(S;) for §; > S

and we define the performability of a network as
— 2n
R=>"R(Si) P(S;).
i=1

For large n, it would be difficult to evaluate the exact value of R in reasonable time.
Li and Silvester(1984) enumerate S, Sq, - -+, Sy, in iterations and, at each iteration,
an upper bound U(m) and a lower bound L(m) are derived as follows;

m m

Um) = S_R(S:) - P(S;) +[1 = Y P(S)] x

1=1 i=1

and
7 m

Lim) =Y R(S;) - P(S;) +[1 - 3_P(8:)] x 5,
1=1 =1

where m is the number of most probable states generated and satisfies

ZP ) > ®(coverage) or Ag ZL <e

With a performance measure having coherence property, Yang and Kubat(1990)
provide superior upper and lower bounds. They generate the most probable states
through tree search, and provide converging upper and lower bounds for performa-
bility at each iteration.

In this paper, we provide a new algorithm for computing upper and lower bounds,
which siginificantly reduces the complexity and memory requirement per iteration
than the existing methods. In Section 2, we describe Yang and Kubat’s algorithm.
In Section 3, we present our algorithm and compares our method with that of Yang
and Kubat. Some numerical examples are discussed in Section 4.

2. YANG AND KUBAT’S ALGORITHM
Considering a network having n links, we make the following assumptions.
1. Each network link can be in one of two states, operational or failed

2. The links fail independently of each other

Yang and Kubat(1990) calculate the most probable states through tree search. More
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specifically, given n and p; for ¢« = 1,2,---,n, they define a special binary tree G
with height n, with each state having exactly two sons and each vertex at level n is
a leaf.(Clearly, this tree has 2™ leaves.) The tree structure for the bridge network of
Figure 3 is shown below in Figure 1.

_,——\
root

level 1

@m

Figure 1. Tree structure of bridge network

The weight of vertex u at level [, denoted as w(u), is defined to be

Hp 1 z,

Clearly, w(u) corresponds to the weight sum of all the leaves in G,. Also, we have
that w(u) = P(S). Thus, the problem of enumerating the most probable states is
equivalent to identifying the addresses of the heaviest leaves in G. In Yang and
Kubat’s algorithm, the address of the mth heaviest leaf of G is identified at the mth
iteration of the algorithm. For a vertex u of G at level [, the heaviest leaf in G, has
weight

n
i=[+1

Yang and Kubat’s algorithm identifies the currently most probable states at each
iteration and provides converging upper and lower bounds for the expected maximum
flow after each iteration. Suppose that we are at the beginning of the mth iteration
of the algorithm and each internal vertex u of G is associated with four variables.

o Wi(u) =w(u) pry - H pi
i=l+2

o Ui(u) =w(u) piy1 -«



Hee Kyoung Lee, Dong Ho Park and Seung Min Lee 137

i
o Wou) =w(u) g1+ [[ »
i=l+2

o Ug(u) = w(u) - g1 - @

Wi (u)(Wo(u)) indicates the weight of the heaviest remaining leaf in the left(right)
subtree of u in G. Uj(u)(Up(u)) indicates upper bound of the left(right) son. If
vertex u has not yet been created in G, we create it. Suppose that vertex u has
already been created in G. Then we visit the left son of u if W;(u) > Wy(u), and
the right son otherwise. When finally a leaf, say v, is reached, we can be sure that
v corresponds to the heaviest remaining leaf of G. Calculate R(v) in leaf v and to
begin update. We only need to update U(v) by w(v) - R(v).

After each iteration of the algorithm, we output U(m) and L(m) as follows.

U(m) = Ui (root) + Uy(root)

and
m m

L(m) = Y R(S)w(S;) +[1 = > w(S)] - B.

1=1 =1

3. ALGORITHM

Let G be a binary tree and consider two nodes u and v in a tree G. If node
u is the parent of node v, then we say that v is a child of u. Two nodes that are
children of the same parent are siblings. The node u is an ancestor of the node v
if there exists a path in G from u to v. Similarly, node v is a descendant of the
node wu if there exists a path in G from u to v. A node that has no sons is called a
leaf. A node u and all its descendants, denoted by G, is called a subtree of G. A
tree structure is used to compute the upper and lower bounds. The tree structure
of bridge network of Figure 3 for bounds computation, is shown below in Figure 2.

Figure 2. Tree structure of bridge network of Figure 3
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Given the most probable states, our algorithm calculates the upper bound at each
iteration independently by the flow of parent nodes. Our algorithm will be more
effective in the memory size and the executing time. To compare the efficiency of our
method, we use Yang and Kubat’s algorithm SEARCH_MPS(). SEARCH_FLOW()

is an algorithm that calculates the flow(R) for the given S;.

SEARCH _MPS(tree, 1, w)
if { == n then return tree
if tree has not been visited before then create and let

tree Wi[l] = w - pi41 - P[l +1]
[

tree Woll] = w - (1 — p41) - P[l + 1]
tree Ui[l] =w - pry1 -«
tree.Upll) = w- (1 — prp1) - @

else choose k such that tree Wi[l] = maz[tree_ Wi[l], tree_-Wy|l]]

tree' « tree Will]

Yy — Kk
if k ==0then w=w- (1l —psy1), PL(S;) =w
else w = w pi4

Call SEARCH_MPS(tree’, I + 1, w)

Algorithm

Step 1. Input : ¢, pj, 7=1,2,---,n

Step 2. Initialize : U(0) =, L(0) =0,i=0, Az =1
Step 3. Create :

an n vector (y1,Y2, ", Yn)
for | =n—1to0do P[] =pi1-Pll+1]
a vertex root

root_W1[0] = P|[0]

root-Wy[0] = P[0]>= —m

root_U1[0] = P[O]

rootUp[0] = (1 —p1) -«
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Step 4. Repeat :
Initialize : Pr(S;) = w =1, R = null
t=14+1
Call SEARCH _MPS(root, 0, 1);
Call SEARCH_FLOW(S;);
R(SF) calculation at process that Yang and Kubat’s algorithm
does update
if R == null then R = R(S;) else R(SF) =R
if R(S;) # R(SF) then
U(i) = U(i = 1) + P(S:) x (R(S:) ~ R(S]))
L) =L -1)+w x R(S;)
A U(z)—.ng!
L(i)
if Ag > € then go to Step 4 else Stop.

Lemma 1. Upper bound U (7) can be expressed as follows.
U(i) = Ui — 1) + Pr(S:) x (R(S)) = R(S]))

Proof. Suppose that the number of son nodes of node u is m, and mark each of them
by u1, ug, -+, U;,. Total probability in node v is Pr(u), and probability of state is
P(u), and flow is R(u). The total probability of each son node is P, (u1), - - -, Pr(um),
and flow is R(u1), - - -, R(us,). Therefore, being R(u) > R(u1), - - -, R(u) > R(um) by
coherence property, the total probability is Pr(u) = Pr(u1) + -+ + Pr{um) + P(u).
Then,

U(i—-1) = RU+ Pp(u)- R(u)
RU + (Pp(u
RU + Py (u

Il

1)+ + Pp(um) + P(u))R(u)
)R(U) + (Pr(u2) + -+ - + Pp(um) + P(u))R(u)
RU + Pp(u1)R(uy) + (Pr(ug) + - - + Pr(um) + P(u))R(
U(i) = RU+ Pp(up)R(ur) + (Pr(u2) + - + Pr(um) + P(u)) R(
RU + Pp(w1)R(u1) + (Pr(u) — Pr(u1))R(u)
)R(u1)

(

Il

v

)

i

+
+
+
+

RU+PL(’LL1 R Ul ( ) ( )—PL(UI)R(U)
= U(i—1) + Pr(u)(R(w1) — R(u))
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4. NUMERICAL EXAMPLES
Example 1. We consider the bridge network in Figure 3, with the flow capacities

c1=2,c0=06,¢c3=14,¢4=25,¢c5 =3 Let_p1 = 0.5, po = 0.6, p3 = 0.7, py = 0.8,
ps = 0.9. The number of states is 2° = 32, R = 3.4952, ¢ > 0.05.

1(2)

Figure 3. Bridge network

Figure 4 and Figure 6 show the process to find the most probable states. Figure 5
and Figure 7 show the update process.
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Figure 4. MPS at iteration 1
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Figure 5. Update at iteration 1
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Figure 6. MPS at iteration 2



142 Performance Analysis for Flow Networks by Most Probable States
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Figure 7. Update at iteration 2

As can be seen in Figure 8 and Table 1, our algorithm is more efficient in generating
the upper and lower bounds at each iteration.

visited node
not visited node

level 1

levet 2

level 3

level 4

!\ level 5

Figure 8. Yang and Kubat’s method
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Table 1. Our method

Iteration(i) | State(S;) | Flow(R(S;)) | PL(S;i) | Calculation
1 ¢ 8 8
2 1 6 05 |8+ (05) % (6—8) =7
3 2 2 02 | 7+(02)x (2—8) =58
4 1,2 0 02 |58+ (0.2) x (0—6) =4.6
5 3 5 0.09 | 4.6 + (0.09) x (5 — 8) = 4.33
6 1,3 3 0.09 | 4.33 + (0.09) x (3 —6) = 4.06
7 2.3 2 0.06 | 4.06 + (0.06) x (2 —2) = 4.06
8 1,2.3 0 0.06 | 4.06 + (0.06) x (0 —0) = 4.06

Table 2 campares our method with that of Yang and Kubat for generating the same
number of most probable states in time and coverage.
(Computer : Pentium I11-450 Dual CPU, RAM 128M, wowlinux7.0, gcc 2.96)

Table 2. Bridge network results

Yang & Kubat | our method
number of used MPS 16 16
upper bound 3.604 3.604
lower bound 3.4488 3.4488
coverage 0.912 0.912
mean time(sec.) 0.000105 0.000093

Example 2. Consider a network given in Figure 9 with p; = 0.8, ps = 0.85,
pP3 = 0.9, P4 = 0.95, ps = 0.99, Pe = 0.999, pr = 0.999, ps = 0.999, P9 = 0.999. In
this example, we consider the following performance measure.

R(S)) = 1, if the network is connected given that the network state is S;
Y71 0, if not

The number of whole state space is 2° = 514 and R = 0.979828. Tables 3 and 4
compare our method with Yang and Kubat’s algorithm. It shows that our algorithm
significantly reduces the memory size and execution time, so that it achieves the

given degree of accuracy or the coverage within a shorter time(See Table 3.) or the
performability R(See Table 4.).
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Figure 9. Network

Table 3. Comparison for the network of Figure 9

Performance Analysis for Flow Networks by Most Probable States

e = 0.001 e = 0.00001
Yang & Kubat new Yang & Kubat new
number of used MPS 33 33 88 102
upper bound 0.980220 0.980313 0.979831 0.979833
lower bound 0.979339 0.979339 0.979822 0.979823
coverage 0.998755 0.998755 0.999710 0.999986
mean time(sec.) 0.000307 0.000218 0.000587 0.000432

Table 4. Comparison results for R=0.979828

upper bound

lower bound

Yang & Kubat new Yang & Kubat new
number of used MPS 111 146 119 119
coverage 0.999991 0.999998 0.999994 0.999994
mean time(sec.) 0.000705 0.000570 0.000718 0.000504
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