트리클로로 락톤 변성폴리에스테르를 함유한 폴리우레탄 난연도료의 제조 및 난연특성

Preparation and Characterization of Polyurethane Flame-Retardant Coatings Containing Trichloro Lactone Modified Polyesters

  • 정충호 (명지대학교 공과대학 화학공학과) ;
  • 박형진 (명지대학교 공과대학 화학공학과) ;
  • 김성래 (명지대학교 공과대학 화학공학과) ;
  • 우종표 (명지대학교 공과대학 화학공학과) ;
  • 김명수 (명지대학교 공과대학 화학공학과)
  • 발행 : 2002.03.01

초록

난연성분인 트리클로로벤조산(TBA)의 함량을 10, 20, 30 wt%로 변화시키면서 아디프산, 1,4-부탄디올 및 트리메틸올프로판과 축중합을 하여 트리클로로 락톤 변성폴리에스테르(TAPTs)를 합성한 후에, TAPT류와 이소시아네이트인 Desmodur IL을 블렌드하여 2성분계 폴리우레탄 난연 도료를 제조하였다. 제조된 난연도료의 도막물성을 측정한 결과, 결코 비난연도료보다 물성이 떨어지지 않음을 알았다. 또한 난연도료의 3종류 난연성 시험결과, 수직법에서 TBA 함량 20 wt% 이상에서 불꽃에 타지 않았고, LOI 연소성 시험에서 TBA 함량 20, 30 wt%시 25%와 27%의 LOI값을 나타내었으며, $45^{\circ}$ Meckel burner법에서는 탄화길이가 3.6-5.2 cm로서 난연 1급에 해당되었으므로 이를 미루어 난연효과가 좋은 난연도료임을 알 수 있었다.

Two-component polyurethane flame-retardant coatings were prepared by blending trichloro lactone modified polyesters (TAPTS) and isocyanate, Desmodur IL. Polycondensation reaction of trichlorobenzoic acid (TBA) as a flame-retardant component, and adipic acid with trimethylolpropane, polycaprolactone 0201, and 1,4-butanediol gave the corresponding TAPTs. The content of TBA was adjusted from 10 to 30 wt% in our experiment. It was found that various properties of these new flame-retardant coatings were comparable to other non-flame-retardant coatings. We also carried out three different tests for the measurement of flammability of flame -retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TBA were determined as 'no burn'. The results of flammability test for the coatings with 20 and 30 wt% of TBA contents indicated the limiting oxygen index (LOI) values of 25% and 27% respectively, which implied relatively good flame retardancy. They also showed the char length of 3.6-5.2 cm according to $45^{\circ}$ Meckel burner test, which can be classified as the first grade flame-retardant coatings.

키워드

참고문헌

  1. J. Coat. Technol. v.70 no.882 S. Vessot;J. Andriew https://doi.org/10.1007/BF02720517
  2. Paint and Surface Coating Technology S. Paul
  3. Fire Saf. J. v.4 V. M. Bhatnagar;J. M. Vergnaud https://doi.org/10.1016/0379-7112(81)90015-1
  4. Anal. Chem. v.57 D. G. Anderson;J. T. Vanderberg https://doi.org/10.1021/ac00282a002
  5. J. Polym. Sci. (part A) Polym. Chem. v.34 H. S. Park;J. H. Keun;K. S. Lee https://doi.org/10.1002/(SICI)1099-0518(199606)34:8<1455::AID-POLA9>3.0.CO;2-Z
  6. J. Appl. Polym. Sci. v.61 H. S. Park; H. S. Hahm;E. K. Park https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<421::AID-APP4>3.0.CO;2-K
  7. J. Coat. Technol. v.69 no.875 C. H. Park;J. P. Wu;H. S. Park;S. K. Kim https://doi.org/10.1007/BF02720169
  8. Encyclopedia of Polymer Science and Engineering(2nd ed.) v.13 H. F. Mark;N. M Bikales;C. G. Overberger;G. Menges;J. I. Kroschwitz
  9. Tone Polyols for High-Performance Coatings, Adhesives, and Elastomers(2nd Ed.) Union Carbide Co.
  10. J. Kor. Ind. Eng. Chem. v.3 H. S. Park
  11. M. S. Dissertation H. K. Kim
  12. Flame Retardancy of Polymeric Materials v.4 W. C. Kuryla;A. J. Papa
  13. J. Kor. Fiber Soc. v.30 H. K. Kim;J. H. Keun;H. S. Hahm;M. S. Pyoun;H. S. Park
  14. Tex. Res. J. v.30 H. Rath;E. Herbolsheimer;S. Stapt https://doi.org/10.1177/004051756003000305
  15. J. Coat. Technol. v.71 no.899 H. S. Park;S. Y. Kwon;K. J. Seo;W. B. Im;J. P. Wu;S. K. Kim
  16. Encyclopedia of Polymer Science and Engineering v.1 H. F. Mark;N. M. Bikales;C. G. Overberger;G. Menges;J. I. Kroschwitz
  17. Polyester Fiber(5th Ed.) R. Yokouchi;I. Nakamura
  18. J. Am. Chem. Soc. v.73 H. A. Pohl https://doi.org/10.1021/ja01156a050
  19. J. Appl. polym. Sci. v.25 R. J. Gardner;J. R. Martin https://doi.org/10.1002/app.1980.070251021
  20. Flame Retardants H. Konishi;C. Hirao
  21. Handbook of Coatings Additives L. J. Calbo
  22. Mod. Plast. v.44 C. P. Fenimore;F. J. Martin
  23. Fire Retardancy of Polymeric Materials A. F. Grand;C. A. Wilkie
  24. Flame Retardancy of Polymeric Materials v.4 W. C. Kuryla;A. J. Papa