Poly(vinylidene fluoride-hexafluoropropylene)계 양성자 전도성 겔-전해질의 열적, 전기적 특성

Thermal and Electrical Properties of Poly(vinylidene fluoride-hexafluoropropylener)-Based Proton Conducting Gel-Electrolytes

  • 최병구 (단국대학교 응용물리학과) ;
  • 박상희 (단국대학교 응용물리학과)
  • 발행 : 2002.03.01

초록

양성자 전도도가 높으며 균일하고 또 기계적 강도가 우수한 양성자 전도체를 얻기 위하여 poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) 공중합체를 전해질의 지지체로 선택하고, $H_3PO_4$이 포함된 ethylene carbonate (EC)와 $\gamma$-butyrolactone (BL) 및 dimethyl carbonate (DMC)의 유기용매들을 혼합하여 겔-전해질을 제조하였다. 다양한 조성의 겔-전해질에 대하여 열분석과 전도도 측정 실험을 수행하였다. 상온에서 양성자 전도도는 30(PVdF-HFP) + 50EC/DMC + $20H_3PO_4$ 전해질에서 7.3$\times$$10^{-3}Sm^{-1}$/로 가장 높았다. 열분석 결과에서 거의 모든 시료는 대략 $80^{\circ}C$ 정도까지 안정하였으며, 특히 인산은 고분자 사슬과 민감하게 반응하여 고분자와 용매의 혼화성을 증대시키는 것을 확인하였다.

Polymer electrolyte films consisting of poly (vinylidenefluoride-hexafluoro-propylene) (PVdF-HFP) $H_3PO_4$and a mixture of ethylene carbonate(EC), $\gamma$-butyrolactone(BL) and dimethylcarbonate (DMC) were examined in order to obtain the best compromise between high protonic conductivity, homogeniety and dimensional stability. Measurements of differential scanning calorimetry and ionic conductivity have been carried out for various compositions. The highest proton conductivity of 7.3 $\times$$10^{-3}Sm^{-1}$ at $30^{\circ}C$ were obtained for a film of 30(PVdF-HFP) + 50EC/DMC + 20H$_3$PO$_4$. From the thermal study, it has been found that the PVdF-HFP gels are stable up to $80^{\circ}C$, and the $H_3PO_4$ enhances the miscibility of the polymer and the solvent by interacting sensitively with polymer segments.

키워드

참고문헌

  1. Proton Conductors: Solids, Membranes and Gel-Materials and Devices J.C. Lasseques;Colomban(ed.)
  2. Chem. Mater. v.8 K.D. Kreur https://doi.org/10.1021/cm950192a
  3. J. Phys. Chem. v.326 D. Raducha;W. Wieczrok;Z. Florjanczyk;J. R. Stevens
  4. Polymer v.38 W. Wieczorek;J. R. Stevens https://doi.org/10.1016/S0032-3861(96)00776-8
  5. J. Power Sources v.90 S. Panero;B. Scrosati https://doi.org/10.1016/S0378-7753(00)00438-9
  6. Electrochim. Acta. v.46 W. Wieczorek;G. Zukowska;R. Borkowska;S. H. Chung;S. Greenbaum https://doi.org/10.1016/S0013-4686(00)00736-2
  7. Handbook of Battery Materials F. Gray;M. Armand;J.O. Besenhard(ed.)
  8. Electrochem. Soc. Rechargeable Li and Li-ion Batteries A. S. Gozdz;J. M. Tarascon;O. S. Gebizlioglu;C. N. Schmutz;P.C. Warren;F. K. Shokoohi;S. Megahed(ed.);B. M. Barnett(ed.);L. Xie(ed.)
  9. J. Polym. Sci. v.9 R. G. Beeman https://doi.org/10.1002/pol.1952.120090511
  10. J. Power Sources v.97;98 Y. W. Kim;M. S. Gong;B. K. Choi
  11. Solid State Ionics v.107 K. Hayamizu;Y. Aihara;S. Arai;W. Price https://doi.org/10.1016/S0167-2738(97)00527-4
  12. Polymer v.42 S. Abbrent;J. Plestil;D. Hlavata;J. Lindgren;J. Tegenfeldt;A. Wendsjo https://doi.org/10.1016/S0032-3861(00)00517-6