Characterization and Biocompatibility with Dispersed Solutfon of PLA-POE-PLA Block Copolymer

PLA-POE-PLA 블록공중합체 분산액에 의한 생체적합성의 평가 및 특성

  • Lee, Chan-Woo (Department of Innovative Industrial & Technology, Hoseo University) ;
  • Kim, Hong (Department of Innovative Industrial & Technology, Hoseo University) ;
  • Song, Kyung-Hun (Department of Clothing & Textiles, Paichai University) ;
  • Moon, Sung-Il (Department of Polymer Science and Engineering, Kyoto Institute of Technology)
  • 이찬우 (호서대학교 공과대학 첨단산업기술전공) ;
  • 김홍 (호서대학교 공과대학 첨단산업기술전공) ;
  • 송경헌 (배재대학교 의류학부) ;
  • 문성일 (일본교토공과대학 기능성고분자학과)
  • Published : 2002.03.01

Abstract

PLLA-POE-PLLA block copolymers were prepared using PLLA and POE with different compositions. Copolymers were obtained in high yield and the polydispersity of the copolymers was very narrow. A dispersed solution of 0.1 g/mL of PLLA-POE-PLLA copolymer was mixed with a dispersed solution of 0.1 g/mL of PDLA-POE-PDLA copolymer. Gel formation was observed from the mixed product obtained at the human body temperature of $37^{\circ}C$. The mixed product comprising PDLA-POE-PDLA and PLLA-POE-PLLA was found to have higher cloud points than that of PLLA-POE-PLLA copolymer. The cloud points decreased with increasing the concentration of the mixed copolymer dispersed solution.

조성비가 서로 다른 각종의 PLLA-POE-PLLA와 PDLA-POE-PDLA블록공중합체의 합성을 실시하여 모든 공중합체를 고수율이며 다분산도가 현저하게 작은 생성물을 얻었으며, 그 결과 체온 부근인 $37^{\circ}C$에서는 0.1 g/mL PLLA-POE-PLLA 분산액과 0.1 g/mL PDLA-POE-PDLA의 혼합분산액에서 겔의 형성이 관찰되었다. 또한 PLLA-POE-PLLA분산액과 비교하여 PLLA-POE-PLLA분산액과 PDLA-POE-PDLA분산액을 혼합한 분산액의 흐림점이 높아지는 것을 확인하였으며 고농도일수록 흐림점이 낮아지는 현상도 확인되었다.

Keywords

References

  1. Bull. Chem. Soc. Jpn. v.69 C. W. Lee;Y. Kimura https://doi.org/10.1246/bcsj.69.1787
  2. US Patent 4438253 D. J. Casey;K. R. Huffman
  3. Chem. Abstr. v.54 E. A. Vitalis
  4. Macromolecules v.25 H. Tsuji;Y. Ikada https://doi.org/10.1021/ma00047a024
  5. Macromol. Phys. v.197 H. Tsuji;Y. Ikada https://doi.org/10.1002/macp.1996.021971033
  6. Macromolecules v.20 Y. Ikada;K. Jamshidi;H. Tsuji;S. H. Hyon https://doi.org/10.1021/ma00170a034
  7. Macromolecules v.26 H. Tsuji;Y. Ikada https://doi.org/10.1021/ma00077a032
  8. Macromolecules v.24 H. Tsuji;F. Horii;S. H. Hyon;Y. Ikada https://doi.org/10.1021/ma00010a013
  9. Macromolecules v.24 H. Tsuji;S. H. Hyon;Y. Ikada https://doi.org/10.1021/ma00020a026
  10. Macromolecules v.24 H. Tsuji;S. H. hyon;Y. Ikada https://doi.org/10.1021/ma00020a027
  11. Macromolecules v.25 H. Tsuji;S. H. Hyon;Y. Ikada https://doi.org/10.1021/ma00037a024
  12. Macromolecules v.25 H. Tsuji;F. Horii;M. Nakagawa;Y. Ikada;H. Odani;R. Kitamura https://doi.org/10.1021/ma00037a024
  13. J. Appl. Polym. Sci. v.51 H. Tsuji;S. H. Hyon;Y. Ikada;Y. Kimura;T. Kitao https://doi.org/10.1002/app.1994.070510216
  14. Polym. Prepr. Japan v.39 K. Shiraki;H. Tsuji;S. H. Hyon;Y. Ikada;T. Nakamura;Y. Shimizu
  15. Biomaterials v.21 B. S. Kim;J. S. Hrkach;R. Langer https://doi.org/10.1016/S0142-9612(99)00174-X