Mechanical Properties and Biodegradability of HDPE/TPS Blends

HDPE/TPS블렌드의 물성 및 생분해도

  • 이상일 (영남대학교 응용화학공학부) ;
  • 홍경민 (영남대학교 응용화학공학부) ;
  • 서석훈 (영남대학교 응용화학공학부) ;
  • 신용섭 (영남대학교 응용화학공학부) ;
  • 김봉식 (영남대학교 응용화학공학부) ;
  • 신부영 (영남대학교 응용화학공학부)
  • Published : 2002.01.01

Abstract

Thermoplastic starch(TPS) was prepared from mixing starch and glycerol by twin extruder. The blends were then prepared from high density polyethylene(HDPE) and TPS. Mechanical properties, thermal properties, and morphology of the blends were investigated. Their biodegradability was also studied by using aerobic composting method(ISO14855). Tensile strength, modulus and elongation at break decreased as the content of TPS increased. In particular elongation at break decreased rapidly even at the lower content of TPS. The melting temperatures of the blends were not changed, which showed that HDPE and TPS were immiscible. The morphology of the fractured surface of blend films was investigated by scanning electron microscopy(SEM). It was found that phases were separated. After composting for 45days, the biodegradability of the blends increased as the content of TPS increased.

전분과 글리세롤을 이축 압출기를 사용하여 열간소성 전분(TPS)으로 제조한 후, TPS와 고밀도 폴리에틸렌(HDPE)을 조성을 달리하여 블렌딩하였다. 열적 특성, 형태학, 기계적 물성을 측정하였고, 조절된 호기성 퇴비화 방법(ISO14855)에 의하여 생분해도를 측정하였다. TPS 함량이 증가할수록 인장 강도, 신장율, 그리고 탄성율이 감소하였다. 특히 신장율은 TPS를 소량 첨가하여도 급격히 감소하였다. HDPE/TPS 블렌드의 $T_m$은 변화가 없었고, 이로써 두 고분자간 상용성이 없음을 확인하였다. 블렌드의 파단면 확인은 전자 주사 현미경으로 하였고, 두 물질의 계면에서 상분리가 일어남을 확인하였다. 45일간의 생분해 실험에서 TPS의 함량이 증가할수록 생분해도가 증가하였다.

Keywords

References

  1. Advances in Polymer Technology v.10 no.1 J.C. Huang;A.S. Shetty;M.S. Wang https://doi.org/10.1002/adv.1990.060100103
  2. Polymer(Korea) v.22 no.2 S.H. Kim;I.J. Jin;J.S. Yoon;K.H. Lee;M.N. Kim;J.S. Jung
  3. Polymer Science and Technology v.9 no.6 K.E. Ryu;Y.B. Kim
  4. U.S. Patent 4,016,117;U.S. Patent 4,021,388;U.S. Patent 4,125,495;U.S. Patent 4,983,651 G.J.L. Griffin
  5. Polymer v.36 no.1877 M.F. Koenig;S.J. Huang
  6. Polymer(Korea) v.18 no.602 Y.T. Yoo;D.K. Kim
  7. J. Appl. Polym. Sci. v.54 no.1685 J.L. Willett
  8. J. Appl. Polym. Sci. v.52 no.617 U.R. Vaidya;M. Bhattacharya
  9. Biopolymers-Utilizing Nature's Advanced Materials W.J. Bergthaller;U. Funke;M.G. Lindhauer;S. Radosta;F. Meister;E. Taeger;S.H. Imam(ed.);R.V. Greene(ed.);B.R. Zaidi(ed.)
  10. Pure Appl. Chem. v.A33 no.5 P. Forssell;J. Mikkila;T. Suorttia
  11. Polymer v.37 no.3543 J.J.G. van Soest;K. Benes;D. de Wit
  12. Starch v.44 no.292 W.M. Doane
  13. Starch v.44 no.335 R.L. Shorgen;C.L. Swanson;A.R. Thompson
  14. Starch v.45 no.276 R.L. Shorgen;G.F. Fanta;W.M. Doan
  15. ASTM Standardization News
  16. ISO 14855 Evaluation of the Ultimate Aerobic Biodegradability and Disintegration of Plastics under Controlled Composting Conditions-Method by Analysis of Released Carbon Dioxide ISO
  17. Polymer(Korea) v.24 no.48 C.H. Shin;Y.J. Kim;B.S. Kim;B.Y. Shin
  18. J. Korean Ind. Eng. Chem. v.11 no.276 Y.J. Kim;C.H. Shin;S.I. Lee;S.H. Jang;B.S. Kim;B.Y. Shin
  19. Biotech. Prog. v.8 no.51 S. Lim;J. Jane;S. Rajagopalan;A. Seib