Phase Behavior of a PEO-PPO-PEO Triblock Copolymer in Aqueous Solutions: Two Gelation Mechanisms

  • Park, Moon-Jeong (School of Chemical Engineering & Institute of Chemical Processes, Seoul National University) ;
  • Kookheon Char (School of Chemical Engineering & Institute of Chemical Processes, Seoul National University) ;
  • Kim, Hong-Doo (Department of Chemistry, Kunghee University) ;
  • Lee, Chang-Hee (Korea Atomic Energy Research Institute) ;
  • Seong, Baek-Seok (Korea Atomic Energy Research Institute) ;
  • Han, Young-Soo (Korea Atomic Energy Research Institute)
  • Published : 2002.12.01

Abstract

Phase behavior of a PEO-PPO-PEO (Pluronic P103) triblock copolymer in water is investigated using small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and rheology. Pluronic P103 shows apparent two gel states in different temperature regions. The first sol-to-gel transition at a lower temperature (i.e., the hard gel I state) turns out to be the hexagonal microphase as evidenced by the combined SANS and SAXS and the frequency dependence of both G′ and G" in rheology. In contrast to the hard gel I, the second sol-to-gel transition (i. e., the hard gel II state) at a higher temperature represents the block copolymer micelles in somewhat disordered state rather than the ordered state seen in the hard gel I. Moreover, turbidity change depending only on the temperature with four distinct regions is observed and the large aggregates with size larger than 5,000 nm are detected with DLS in the turbid solution region. Based upon the present study, two different gelation mechanisms for aqueous PEO-PPO-PEO triblock copolymer solutions are proposed.

Keywords

References

  1. Macromolecules v.25 M .Malmsten;B. Lindman https://doi.org/10.1021/ma00046a049
  2. Macromolecules v.27 O. Glatter;G. Scherf;K. Schill;W. Brown https://doi.org/10.1021/ma00099a017
  3. Macromolecules v.27 P. Alexandridis;J. F. Holzwarth;T. A. Hatton https://doi.org/10.1021/ma00087a009
  4. Langmuir v.8 P. Bahadur;K. Pandya https://doi.org/10.1021/la00047a016
  5. J. Chem. Soc. Faraday Trans. v.88 G. E. Yu;Y. Deng;S. Dalton;Q. G. Wang;D. Attwood;C. Price;C. Booth https://doi.org/10.1039/ft9928802537
  6. Macromolecules v.28 A. V. Kabanov;I. R. Nazaroba;I. V. Astafieva;E. V. Batrakova;V. Y. Alakhov;V. A. Kobanov https://doi.org/10.1021/ma00111a026
  7. Chem. Pharm. Bull v.40 no.8 S. Miyazaki;Y. Ohkawa;M. Takeda;D. Attwood https://doi.org/10.1248/cpb.40.2224
  8. J. Pharm. Sci v.85 no.9 R. Bhardwaj;J. Blanchard https://doi.org/10.1021/js960097g
  9. Phys. Rev. Lett. v.68 K. Mortensen;W. Brown;B. Norden https://doi.org/10.1103/PhysRevLett.68.2340
  10. Macromolecules v.26 K. Mortensen;J. S. Pedersen https://doi.org/10.1021/ma00056a035
  11. Colloid Polym. Sci. v.268 G. Wanaka;H. Hoffmann;W. Ulbricht https://doi.org/10.1007/BF01513189
  12. Langmuir v.13 I. Goldmints;F. K. Gottberg;K. A. Smith;T. A. Hatton https://doi.org/10.1021/la970140v
  13. Langmuir v.12 A. M. G. Dasilva;E. J. M. Filipe;J. M. R. Doliveira;J. M. G. Martinho https://doi.org/10.1021/la960604+
  14. in Viscoelastic Properties of Polymers, 3rd Ed. J. D. Ferry
  15. Macromolecules v.31 Y. Liu;S. -H. Chen;J. S.Huang https://doi.org/10.1021/ma971253o
  16. J. Phys. Chem. v.98 S. Hvidt;E. B. Jorgensen;W. Brown;K. Schillen https://doi.org/10.1021/j100098a030
  17. Macromolecules v.30 E. B. Jorgensen;S. Hvidt;W. Brown;K. Schillen https://doi.org/10.1021/ma9616322
  18. Macromol. Rapid Commun. v.23 M. J. Park;K. Char https://doi.org/10.1002/1521-3927(20020801)23:12<688::AID-MARC688>3.0.CO;2-R
  19. J. Phys. Chem. v.100 B. Nystrom;H. Walderhang https://doi.org/10.1021/jp952486p
  20. Langmuir v.17 A. Kelarakis;V. Castelletto;C. Chaibundit;J. Fundin;V. Havredaki;I. W. Hamley;C. Booth https://doi.org/10.1021/la0101806
  21. in The Physics of Block Copolymers I. W. Hamley