Cure Reactions of Epoxy/Anhydride/(Polyamide Copolymer) Blends

  • Youngson Choe (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Wonho (Department of Chemical Engineering, Pusan National University)
  • Published : 2002.10.01

Abstract

The cure kinetics of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer, poly(dimmer acid-co-alkyl polyamine), were studied using differential scanning calorimetry (DSC) under isothermal condition. On increasing the amount of polyamide copolymer in the blends, the reaction rate was increased and the final cure conversion was decreased. Lower values of final cure conversions in the epoxy/(polyamide copolymer) blends indicate that polyamide hinders the cure reaction between the epoxy and the curing agent. The value of the reaction order, m, for the initial autocatalytic reaction was not affected by blending polyamide copolymer with epoxy resin, and the value was approximately 1.3, whereas the reaction order, n, for the general n-th order of reaction was increased by increasing the amount of polyamide copolymer in the blends, and the value increased from 1.6 to 4.0. A diffusion-controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/anhydride/(polyamide copolymer) blends. Complete miscibility was observed in the uncured blends of epoxy/(polyamide copolymer) up to 120 $^{\circ}C$, but phase separations occurred in the early stages of the curing process at higher temperatures than 120 "C. During the curing process, the cure reaction involving the functional group in polyamide copolymer was detected on a DSC thermogram.gram.

Keywords

References

  1. Polymer v.30 H. Bucknall;A. H. Gillbert https://doi.org/10.1016/0032-3861(89)90107-9
  2. Polymer Intl v.26 D. J. Hourston;J. M. Lane;N. A. MacBeath https://doi.org/10.1002/pi.4990260104
  3. J. Polym. Sci. Polym. Phys v.36 I. Alig;W. Jenniger
  4. Polymer v.41 C. W. Wise;W. D. Cook;A. A. Goodwin https://doi.org/10.1016/S0032-3861(99)00686-2
  5. J. Appl. Polym. Sci. v.51 D. Chen;J. P. Pascault;R. J. Bertsch;R. S. Drake;A. R. Siebert https://doi.org/10.1002/app.1994.070511112
  6. Polyer v.39 P. A. Oynguren;C. C. Riccardi;R. J. J. Williams;I. Mondragom
  7. Polymer v.36 C. S. Chean;M. W. Eamor https://doi.org/10.1016/0032-3861(95)94337-S
  8. Macromolecules v.32 A. Bonnet;J. P. Pascault;H. Sautereau;Y. Camberlin https://doi.org/10.1021/ma981754p
  9. Macromolecules v.32 A. Bonnet;J. P. Pascault;H. Sautereau;Y. Camberlin https://doi.org/10.1021/ma981755h
  10. Polymer v.39 Z. K. Zhong;Q. P. Guo https://doi.org/10.1016/S0032-3861(97)00309-1
  11. Polymer v.40 T. Agag;T. Takeichi https://doi.org/10.1016/S0032-3861(99)00026-9
  12. Polymer v.41 R. J. Varley;J. H. Hodgkin;D. G. Hawthorne;G. P. Simon;D. McCulloch https://doi.org/10.1016/S0032-3861(99)00503-0
  13. Polymer v.41 K. Mimura;H. Ito;H. Fujioka https://doi.org/10.1016/S0032-3861(99)00700-4
  14. Proceedings of the ANTEC 96 v.1 G. Rajagopalan;J. W. Gillespie;S. H. Mcknight
  15. Polymer v.40 E. Girard-Reydet;H. Sautereau;J. P. Pascault https://doi.org/10.1016/S0032-3861(98)00302-4
  16. Polymer v.20 M. E. Rayn;A. Dutta https://doi.org/10.1016/0032-3861(79)90222-2
  17. J. Polym. Sci. v.32 K. Horie;H. Hiura;M. Sawada;I. Mita;H. Kambe
  18. Polymer v.40 S. Poncet;G. Boiteux;J. P. Pascault;H. Sautereau;G. Seytre;J. Rogozinski;D. Kranbuehl https://doi.org/10.1016/S0032-3861(99)00104-4
  19. Macromol. Res. v.10 no.3 K. C. Lee;S. E. Lee;B. K. Song https://doi.org/10.1007/BF03218262
  20. Polymer v.41 L. Barral;J. Cano;J. Lopez;I. Lopez-Bueno;P. Nogueira;M. J. Abad;C. Ramirez https://doi.org/10.1016/S0032-3861(99)00435-8
  21. Macromol. Res. v.10 no.1 J. K. Lee;Y. Choi;J. R. Lee https://doi.org/10.1007/BF03218285
  22. Macromol. Res. v.10 no.1 K. S. Ryu;S. H. Chang;S. K. Kwon https://doi.org/10.1007/BF03218286
  23. Polym. Eng. Sci. v.27 C. S. Chern;G. W. Poehlein