Effects of the Decomposition Residue of Compound Additive on Resintering Behavior

  • Kim, H.S. (Korea Atomic Energy Research Institute) ;
  • C.Y. Joung (Korea Atomic Energy Research Institute) ;
  • Kim, S.H. (Korea Atomic Energy Research Institute) ;
  • S.H. Na (Korea Atomic Energy Research Institute) ;
  • Lee, Y.W. (Korea Atomic Energy Research Institute) ;
  • D.S. Sohn (Korea Atomic Energy Research Institute)
  • Published : 2002.08.01

Abstract

Various types of compounds were tested with the aspects of decomposition and formation of residue in a $CO_2$ or 7H$_2$+93$N_2$ atmosphere. The evaporation temperature range of each compound was determined from thermogravimetric curve. Decomposition of dicarbon amide, stearic acid, acrowax and zinc stearate was studied by thermogravimetry in $CO_2$ or in 7H$_2$+93$N_2$ atmosphere. All compounds were decomposed in $CO_2$ atmosphere at lower than 40$0^{\circ}C$, but the residue, ZnO remained for zinc stearate. ZnO did not decompose in $CO_2$ atmosphere up to 130$0^{\circ}C$, but reduced into Zn metal and disappeared in the temperature range of $600^{\circ}C$ to 120$0^{\circ}C$ in 7H$_2$+93$N_2$ atmosphere. The effect of residue, which trapped in closed pores of sintered pellet, on the thermal stability was studied using the resintering test at 1$700^{\circ}C$ in 7H$_2$+93$N_2$ atmosphere. In the case of oxidative sintered pellet with admixing zinc stearate, the cavity formation accompanied with a density drop after resintering is due to the pressure of the Zn gases trapped in the isolated pores.

Keywords

References

  1. R. Meyer, J. Pillot and H. Pastor, Powder Metallurgy, 12(24), 298-304, (1969) https://doi.org/10.1179/pom.1969.12.24.003
  2. A.P. Bromly, R.Logsdin and V.A. Roberts, IAEA Technical committee Meeting on Recycling of Plutonium and Uranium in Water Reactor Fuel, Newby Bridge, Windermere, UK, 3-7 July (1995)
  3. H.S. Kim, C.Y. Joung, et al., 'Pore controls of $UO_2+5wt%CeO_2$ pellets by addition of pore formers' Proceedings of the Korean Nuclear Society Autumn Meeting, Daejon, Korea, October (2000)
  4. K.C. Radford and J.M. Pope, J. Nucl. Mater., 64, 289-299, (1977) https://doi.org/10.1016/0022-3115(77)90081-2
  5. H. Assmann and H. Stehle, Nucl. Engineering and Design 48,49-67, (1978) https://doi.org/10.1016/0029-5493(78)90208-X
  6. S.H. Kim, et al., 'Variation of sintered density and microstructure in $UO_2+5wt%CeO_2$ pellet with poreformer addition and resintering atmosphere' Proceedings of the Korean Nuclear Society Spring Meeting, Cheju, Korea, May (2001)
  7. Y. Harada, J. Nucl. Mater., 245, 217-223, (1997) https://doi.org/10.1016/S0022-3115(96)00755-6
  8. H.S. Kamath. D.S.C. Purushotham, D.N. Sah and P.R. Roy, Proc. IAEA-SM on Improved Utilization of Water Reactor Fuel with Special Emphasis on Extended Burnups and Plutonium Recycling, Mol, Belgium, May 7-11, (IAEA, Vienna, 1984), (1984)
  9. I. Amato, R.L. Colombo and A.M. Pretti, J. Nucl. Mater., 8, 271-272, (1963) https://doi.org/10.1016/0022-3115(63)90046-1
  10. C.Y. Joung, H.S. Kim, et al., 'Resintering behavior of $UO_2+5wt%CeO_2$ sintered pellet' Proceedings of the Korean Nuclear Society Spring Meeting, Daejon, Korea, May (2000)
  11. I. Amato, R.L. Colombo and A.M. Protti, J. Nucl. Mater., V.13, 265-267, (1964) https://doi.org/10.1016/0022-3115(64)90048-0
  12. H. Assmann, W. Doerr and M. Peehs, J. Nucl. Mater., 140,1-6, (1986) https://doi.org/10.1016/0022-3115(86)90189-3
  13. S.G. Brandberg, Nuclear Technology, 18, 177-184, (1973) https://doi.org/10.13182/NT73-A31286
  14. T. Ishioka, K. Maeda, I Watanabe, S. Kawauchi, M. Harada, Spectrochimica Acta Part A 56, 1731-1737, (2000) https://doi.org/10.1016/S1386-1425(00)00225-0
  15. W.K. Park, H.S. Kim and J.N. Lee, J. Korean Institute of Metals, 19(10) (1981) 864-872
  16. J.K. Han, W.K. Park and H.S. Kim, J. Korean Nuclear Society 15(3), 197-206, (1983)