DOI QR코드

DOI QR Code

Construction of a Genetic Linkage Map in Radish(Raphanus sativus L.) Using RAPD Markers

RAPD 마커를 이용한 무의 유전자지도 작성

  • Published : 2002.09.01

Abstract

Genetic map and molecular marker have a great importance in improving and facilitating crop breeding program as well as in genome analysis and map-based cloning of genes representing desirable characters. This study aimed at developing RAPD markers and constructing a genetic linkage map using 82 BC$_1$F$_1$individuals originated from the cross between '835' and B$_2$in radish (Raphanus sativus L.). One of the parents for genetic linkage map construction, '835'(P$_1$) of egg type is susceptible to Fusarium wilt and have medium resistance to virus infection and the other parent, B$_2$(P$_2$) of round type, is susceptible to Fusarium wilt and virus, Screening of 394 RAPD primers in BC$_1$F$_1$) population resulted in selecting 128 polymorphic markers which displayed 1:1 segregation pattern. Two markers failed to display 1:1 segregation and showed the segregation ratio skewed to maternal genotype. Selected markers were categorized into 14 linkage group based on LOD score represented by MAPMAKER/EXP program. Five groups composed of single marker among them were excluded from the linkage map, and consequently, the remaining groups are well matched with the number of radish chromosome (n=9). The linkage map constructed with 128 markers covers 1,688.3 cM and the average distance between markers was 13.8 cM. For developing STS marker, we determined the partial nucleotide sequence of OPE10 marker at both ends and designed a oligonucleotide primer pair based on this sequence. STS PCR using the primer pair displayed a single, clear band of which segregation is perfectly matched with that of OPE10 marker. This implies that RAPD markers could readily convert into clear and reliable STS markers.

작물의 신품종 육성 과정에 있어서 선발은 육종의 성패를 좌우하는 중요한 과정이다. 하지만 개체가 나타내는 표현형은 유전적 요인과 환경적 요인이 동시에 작용하여 나타나기 때문에 유전적인 효과만 구분하여 선발하는 것은 매우 어렵다. 최근에 분자생물학 분야의 연구가 급속도로 발전함에 따라 분자 수준의 표지 인자를 유용 유전자의 간접선발 지표로 활용하여 선발 효율을 높일 수 있게 되었다. 작물의 유전자 지도 및 분자 표지인자는 작물 육종에 매우 유용하게 활용될 수 있다. 따라서 본 연구에서는 무에서 양친인 '835'와 'B$_2$'에서 유래한 여교잡 집단 82개체를 이용하여 RAPD 유전자군 지도를 작성하고 관련 마커를 탐색하여 육종에 이용하고자 연구를 수행하였다. Primer 375종류를 이용하여 양친, 835와 B$_2$ 사이의 다형화 밴드 128개를 찾았다. BC$_1$F$_1$집단 조사를 통해 MAPMAK ER/EXP를 이용하여 연관군 지도를 작성하였다. 분리 분석된 RAPD 표지인자 128개 중 126개는 멘델의 이론 분리비 1:1에 적합하였으며. 2개는 동형접합체 (모본형) 쪽으로 편중되어 분리되었다. LOD 3.0 수준에서 128개의 표지인자가 9개의 연관군으로 나뉘어졌고 전체거리는 1,688.3 cM이었으며, 표지인자 간 평균거리는 13.8 cM으로 Lefebvre 등 (1996)이 발표한 자료를 참고하여 무 genome 전체의 유전적 거리를 계산한 결과 무의 유전자지도는 무 genome전체의 68.7%~80.1%를 포함하는 것으로 추정할 수 있었다. RAPD 마커에서 문제시되는 재현성 문제를 검정하기 위해 이를 STS 마커로 변환하고자 OPE10 primer에 의해 증폭된 특정 밴드를 클로닝하고 염기서열을 분석한 다음 얻어진 염기서열을 기본으로 하여 primer를 제작하여 PCR 하였다. 그 결과 10mer인 OPE10을 이용하여 분석했을 때와 동일하였으며 목적 밴드 외 다른 밴드는 생성되지 않아 앞으로 분자 마커로서 충분히 이용될 수 있음을 보여주었다.

Keywords

References

  1. Ayliffe MA, Lawrence GJ, Pryor AJ (1994) Heteroduplex molecules formed between allelic sequence cause nonparental RAPD bands. Nucl Acids Res 22:1632-1636 https://doi.org/10.1093/nar/22.9.1632
  2. Chaparro JX, Werner DJ, Malley KO, Sederoff RR (1993) Targeted mapping and linkage analysis of morphological isozyme and RAPD markers in peach. Theor Appl Genet 87:805-815
  3. Chen H, Zhn L, Xu J, Chen M (1995) Construction of rice RAPD molecular linkage map. Acta Botanica Sinica 37 (9):677-684
  4. Chen J, Delaporta S (1993) Urea-based plant miniprep. In: The Maize Handbook (Freeling, M. and V. Walbot). Springer-Verlag Labrotary. pp. 526-527
  5. Demeke T, Adams RP (1994) The use of PCR-RAPD analysis in plant taxonomy and evolution In: Griffin, H.G. and A.M. Griffin (eds). PCR technology current innovations. CRC Press. pp.179-192
  6. Frisch P, Hanson MA, Spore CD, Pack PE, Rieseberg LH (1993) Constancy of RAPD primer amplification strength among distantly related taxa of flowering plants. Plant Mol Biol Reporter 11:10-20 https://doi.org/10.1007/BF02670555
  7. Gu WK, Weeden NF, Yu J, Wallace DH (1994) Large-scale, costeffective screening of PCR products in marker-assisted selection applications. Theor Appl Genet 91:465-470
  8. Haley SD, Miklas PN, Stavely JR, Byrum J, Kelly JD (1993) Identification of RAPD markers linked to major rust resistance gene block in common bean. Theor Appl Genet 86:505-512 https://doi.org/10.1007/BF00838567
  9. Innis MA, Gelfand DH (1990) Optimization of PCR In: PCR protocols a guide to methods and application. Academic Press. pp.3-20
  10. Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce) constructed from RFLP and RAPD marker. Genetics 136:1435-1446
  11. Kosambi D (1944) The estimation of map distances from recombination values. Ann. Eugen. 12:172-175
  12. Lander EC, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181 https://doi.org/10.1016/0888-7543(87)90010-3
  13. Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor Appl Genet 93:503-511 https://doi.org/10.1007/BF00417941
  14. Lefebvre V, Palloix A, River M(1993) Nuclear RFLP between pepper cultivars (Capsicum annuum L.). Euphytica 71:189-100 https://doi.org/10.1007/BF00040408
  15. Melchinger AE (1990) Use of molecular markers in breeding for oligogenic disease resistance. Plant Breeding 104:1-19 https://doi.org/10.1111/j.1439-0523.1990.tb00396.x
  16. Natalis A, Nickolai OB, westblom TO, Kresovich S, Douglas EB (1992) DNA diversityamong clinical isolater of Helicobacter pylori detected by PCR-based RAPD finger printing. Nucl Acids Res 20:5137-5142 https://doi.org/10.1093/nar/20.19.5137
  17. Novy RG, Vorsa N (1996) Evidence for RAPD heteroduplex formation in cranberry implication for pedigree and genetic relatedness studies and a source of co-dominant RAPD markers. Theor Appl Genet 92:840-849 https://doi.org/10.1007/BF00221896
  18. Penner GA, Chong J, Levesque-Lemay M, Molnar SJ, Fedak G (1993) Identification of a RAPD marker linked to the oat stem rust gene Pg3. Theor Appl Genet 85:702-705
  19. Roy A, Frascaria N, Mackay J, Bousquet J (1992) Segregating random amplified polymorphic DNAs (RAPDs) in Betula alleghaniensis. Theor Appl Genet 85:173-180
  20. Thormann CE, Ferreira ME, Camarge LEA, Tivang JG, Osborn TC (1994) Comparison of RAPD markers to estimating genetic relationships within and among Cruciferous species. Theor Appl Genet 88:973-980
  21. Torres AM (1993) Identifying rose cultivars using random amplified polymorphic DNA markers. HortScience 28:333-334
  22. Tragoonrung S, Kanazin V, Hayes PM, Blake TK (1992) Sequencetagged-site-facilitated PCR for barley genome mapping. Theor Appl Genet 84:1002-1008
  23. Weeden NF, Timmerman GM, Hemmat M, Kneen DE, Lodhi MA (1992) Idenification and reliability of RAPD marker. In: Application of RAPD technology to plant breeding. pp.12-17. Joint Plant Breeding symposia Series. Minnesota
  24. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531-6535 https://doi.org/10.1093/nar/18.22.6531
  25. YAE BW (1994) Classification of Malus domestica Cultivars by Random Amplified Polymorphic DNA and Selection of Markers for Cultivar Identification. PhD thesis, Seoul National University, Suwon. pp.13-14
  26. Young ND, Tanksley SD (1989a) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:95-101 https://doi.org/10.1007/BF00292322
  27. Young ND, Tanksley SD (1989b) Restriction Fragment Length Polymorphism maps and the concept of graphical genotypes. Theor AppI Genet 77:353-359 https://doi.org/10.1007/BF00305828