High Level Object Oriented Real-Time Simulation
Programming and Time-triggered Message-triggered
Object(TMO) Scheme

Chan-Joo Jeong - Sang-Dong Na’

ABSTRACT

The object-oriented(O0) distributed real-time(RT) programming movement started in 1990's and is growing
rapidly at this turn of the century. Distributed real-time simulation is a field in its infancy but it is bounded to
receive steadily growing recognition for its importance and wide applicability. The scheme is called the distributed
time-triggered simulation scheme which is conceptually simple and easy to use but widely applicable. A new
generation object oriented(O0) RT programming scheme is called the time-triggered message triggered object(TMO)
programming scheme and it is used to make specific illustrations of the issues. The TMO structuring scheme is a
general-style components structuring scheme and supports design of all types of component including hard real time
objects and non real time objects within one general structure.

Keyword
Object Oriented(00), Real-Time(RT), Time-triggered Message triggered Object(TMO)

| . Introduction

Object oriented real time distributed computing is
a rapidly growing branch of computer science
and engineering. Its growth is fueled by the
strong needs present in industry for the RT
programing methods and tools which will bring
about orders of magnitude improvement over the
traditional RT programing practiced with low-
level programing languages and styles.

RT simulator developments are under increasing
demands[1,2,34]. For example, continuing advances
in virtual reality application accompany increasing
powerful RT
capabilities. Numerous other examplescan also be
found in the RT computing control field. Not

demands for more simulation

only description but also simulation of application
environments is often performed as integral steps

of validating control computer system designs.
RT simulators of application environments can
often enable highly cost-effective testing of the
control computer systems implemented. Such
testing can be a lot cheaper than the testing
performed in actual application environments
while being much more effective than the testing
based on non-RT simulators of environments.
The new generation OO RT programing
scheme called the time-triggered message
triggered object programing schemel[3,56]. In the
course of developing a RT system engineering
methodology based on this TMO programing
scheme, a new approach to RT simulation which
is conceptually simple and easy to use but

widely applicable, has also been established.

SEMUSE YR BT
YA 2002, 10. 21

HY N HREEEY

#3/ High Level Object Oriented Real-Time Simulation Programming and:--

In the next section, the motivations for
pursuing the OO RT programing approach are
reviewed and then in section 3, a brief overview
is taken of the particular programing scheme. This

scheme called the time-triggered
triggered object(TMO)

scheme [3,6] is used on several occasions in the

programing
message programing
rest of this paper to make specific illustrations of
the issues and potentials of OO RT programing.

Il. High-Level Approach to Programming
Real-Time Distributed Systems

As a concrete example of a high-level OO RT
distributed programming approach that has been
based on the philosophy discussed in the preceding
section, the time-triggered message-triggered
object (TMO) programming scheme is briefly
summarized in this section[2,3,4,5,6].

The TMO scheme was established in early
1990's
execution semantics for economical reliable design

and implementation of RT systems. The TMO

with a concrete syntactic structure and

scheme is a general-style component structuring
scheme and supports design of all types of
including distributable objects and
distributable non-RT objects within one general
structure.

Calling the TMO
distributed programming scheme is justified by

components

scheme a high-level

the following characteristics of the scheme :

(1) No manipulation of processes and threads
:Concurrency is specified in an abstractform at
the level of object methods. Since processes and
threads are transparent to TMO programmers,
the priorities assigned to them, if any, are not
visible, either.

(2) No manipulation of hardware-dependent

features in programming interactions among

objects : TMO programmers are not burdened
with

protocols and any direct manipulation of physical

any direct use of low-level network

channels and physical node addresses/names.
(3) No specification of timing requirements in

(indirect)
completion deadlines for program units

terms other than start-windows and
(e.g.,
object methods) and time-windows for output
actions TMOs are devised to contain only
high-level intuitive and yet precise expressions of
timing requirements. Priorities are attributes often
attached by the OS to

abstractions such as threads and they are not

low-level program

natural expressions of timing requirements.
Therefore, no such indirect and inaccurate styles
of expressing timing requirements are associated

with objects and methods.

At the same time the TMO scheme is aimed
for enabling a great reduction of the designer’s
efforts in guaranteeing timely service capabilities
of distributed computing application systems. It
has been formulated from the beginning with the
objective of enabling design-time guaranteeing of
timely actions. The TMO incorporates several
rules for execution of its components that make
the analysis of the worst-case time behavior of
TMOs to be systematic and relatively easy while
not reducing the programming power in any
way.

TMO is a natural and syntactically minor
of the
conventional object(s)[6]. As depicted in Fig. 1
the basic TMO structure consists of four parts :

but semantically powerful extension

ODS-sec = object-data-store section @ list

of object-data-store segments(ODSS’s);
EAC-sec=
section :

environment access—capability
list of gate objects (to be discussed

later) providing efficient call-paths to remote

857

FRHFYRFAG=EA A6H A6E

object methods, logical communication channels,
and I/O device interfaces;

SpM-sec = spontaneous-method section : list
of spontaneous methods;

SvM-sec = service-method section.

E Capabilities for accessing
other TMO's and network

environmentincl. logical
multicast channels, and
1/0 devices

Time-triggered (TT)
Spontaneous Methods
(SpM's)
“Absolute time
domain”

Message-triggered
Service Methods
(SvM's)
"Relative time
domain”

Figure 1. Structure of the TMO

Major features are summarized below.

(a) Distributed computing component :

The TMO is a distributed computing component
and thus TMOs distributed over multiple nodes
may calls. To
maximize the concurrency in execution of client
methods in one node and server methods in the

interact via remote method

same node of different nodes, client methods are
allowed to make non-blocking types of service
requests to server methods.

(b) Clear separation between two types of
methods :

The TMO may contain two types of methods,
time-triggered (TT-) methods (also called the
spontaneous methods of SpMs), which are clearly
separated from the conventional service methods
(SvMs). The SpM executions are triggered upon
reaching of the RT clock at specific values
determined at the design time whereas the SvM

858

are triggered by service request

messages from clients. Moreover, actions to be

executions

taken at real times which can be determined at
the design time can appear only in SpMs.

(c) Basic concurrency constraint (BCC) :

This rule prevents potential conflicts between
SpMs and
efforts in guaranteeing timely service capabilities
of TMOs.
triggered by a message from an external client is

SvMs and reduces the designer’s

Basically, activation of an SvM
allowed only when potentially conflicting SpM
executions are not in place. An SvM is allowed
to execute only when and execution time-window
big enough for the SvM that does not overlap
with the execution time-window of any SpM
that accesses the same ODSSs to be accessed by
the SvM, opens up. However, the BCC does not
stand
executions of concurrent SvM executions.

in the way of either concurrent SpM

(d) Guaranteed completion time and deadline :

The TMO incorporates deadlines in the most
general form. Basically, for output actions and
method completions of a TMO, the designer
guarantees time-
windows bounded by start time and completion

and advertises eXecution

times.

Triggering times for SpMs must be fully
specified as constants during the design time.
Those real-time constants appear in the first
specification called the
(AAC) section,

clause of an SpM
autonomous activation condition
An example of an AAC is

"for t = from 10am to 10:50am every 30min
start-during (t, t+Smin) finish-by t+10min”
which has the same effect as

"start-during (10am, 10:05am)

finish-by 10:10am”,

3/ High Level Object Oriented Real-Time Simulation Programming and---

"start-during (10:30am, 10:35am)
finish~by 10:40am”

A provision is also made for making the AAC
section of an SpM contain only candidate triggering
times, not actual triggering times, so that a
subset of the candidate triggering times indicated
in the AAC section may be dynamically chosen
for actual triggering. Such a dynamic selection
occurs when an SvM within the same TMO
object requests future executions of a specific
SpM. Each AAC specifying candidate triggering
times rather than actual triggering times has a
name.

An underlying design philosophy of the
TMO scheme is that an RT computer system
will always take the form of a network of
TMOs. The designer of each TMO provides a
guarantee of timely service capabilities of the
object. The designer does so by indicating the
guaranteed execution time-window for exery
output produced by each SvM as well as by
each SpM executed on reqguests from the SvM
and the guaranteed completion time (GCT) for
the SvM in the specification of the SvM. Such
specification of each SvM is advertised to the
objects. Before
determining the time-window specification, the
server object
himself/herself that with the object execution
engine (a composition of hardware, node OS, and
middleware) available, the server object can be
implemented to always execute the SvM such

designers of potential client

designer must convince

that the output action is performed within the
time-window. The BCC contributes to major
reduction of these burdens imposed on the
designer.

Middleware which together with node OSs
andhardware make up TMO execution engines,

have been developed.

ill. Muiti-Level Multi-Step Desing
with The TMQO Structuring

First, the system engineering team describes
the application environment as the TMO Mini-
Theater in Figure 2, without the components
enclosed by square brackets.

Mini-Theater
Access Capability (to other TMO's) None
Object Data Store

Mini-Theater Space (=Sky+Land Space)
Flying Airplane Group Container
Information(=Environment)

Flying Object Tracking information(=Reporter)
[Radari on Land]

[Radar2 on Land]

SpM "Update the state descriptors in ODS"
Update the state of Target in Land

{ Update the state of Radar1 on Land]

{ Update the state of Radar2 on Land]

{ Update the state of Flying Airplane Group Container |
[Update the state of Reporter on Land]

SvM

Receive Flying Airplane Information From FAGC
Receive Request From Radars

Receive Flying Airplane Information From ASPACE
Receive Reporter From Radars

Figure 2. High-level specification of the Mini Theater
TMO.

The components in brackets describes sensors
(such as radar) which do not yet exist because
the system engineering team has not decided
which types to use.

The information kept in Mini-Theater is a
composition of the information kept in all the
state descriptors within its object data store,
Here the object data store basically consists of
the state descriptors for the following three
environment components:

» Flying Airplane Group Container information
(Environment)

» Flying Object Tracking Information(Reporter)

» Mini-Theater Space(Sky and Land)

859

FAGAEFAES =2A A6E A6Z

Corresponding to each of these state descriptors
of environment components is a spontaneous
method that periodically updates the state descriptor.

to recognize the departure of any component
from the Mini-Theater.
The Mini-Theater object is more than a mere

Conceptually,

spontaneous methods in Mini-

Control Computer System In Reporter

Access Capability (to other TMOs)
Radar (Accept_spot_check_request)

Object Data Store
Radar data received, Flying airplane tracking information

SpM
SoM1 Radar Data Processing Step
- “Process all the radar data received since the last processing cycle,
update the flying object tracks”
AAC : for T = from TMO_START + WARMUP_DELAY_SECS
to TMO_START + SYSTEM_LIFE_HOURS every PERIOD
start-during (T. T + START_WINDOW) finish-by T + DEADLINE
InputSpec : Radar data received in the object data store
QutputSpec : <deadline : xxx msec> Reflect changes onto the object data store,
i.e., Radar data received, Flying airplane tracking info.
<deadline : xxy msec> Send spot-check radar requests to Radar if

SvM
SwM1 Receive_from Radar_on_tand (pos_list)
< Accept-with-Delay_Bound—of ACCEPTANCE_DEADLINE
under MAX_REQUEST_RATE finish-within EXECUTION_TIME_LIMIT>
- “Receive from Radar_on_Land the information on all recent detections.”
InitiationCond : Other SvM1 invocations are not in place.
LnputSec : pos_list = array of (return_type (=scan_search/spot_check).

description of the application environment; it is

position, time, predicted_time}
QutputSpec : <deadline :

in the object data store
SwW2 Accept Advice from -+ < Accept-via—- .>

yyy msec> Deposit the radar data received

Figure 3. Intermediate Specification of the control computer system for Command Post.

Theater TMO are activated continuously and
each of their executions is completed instantly.
Spontaneous methods thus represent continuous
state that occur naturally in the
environment components. Multiple
methods activated simultaneously can be used to

changes
spontaneous

precisely represent the natural parallelism that
exists among environment components,

The state descriptor for the theater space
not only provides geographical information about
the theater but also maintains the position of
every moving component in the Mini-Theater.
This used to determine the
occurrences of collisions among components and

information is

860

also a simulation model. To support simulation,
the designers choose an activation frequency for
each spontaneous method such that it can be
The
behavior of the environment can be simulated.
of course

supported by anobject execution engine.

This practical simulation is less
accurate than the unexecutable description based
on continuous activation of spontaneous methods.
In general, the accuracy of a TMO-structured
simulation is a function of the chosen activation
frequencies of spontaneous methods.

Next the system engineering team decides
which sensors to deploy. Sensors include two
locatedon land. Once this is

radars done,

%/ High Level Object Oriented Real-Time Simulation Programming and:-

Mini-Theater can be expanded to incorporate all
the components enclosed by square brackets in
Fiqure 2. The object data store now contains the
selected sensors. The two radars loaded on
Reporter are described in the state descriptor for
the Reporter.

Now the system engineering team should also
decide how to deploy the computer-based control
system in the Mini-Theater. The functions of the
control system will be determined by the control
theory logic adopted.

In this experimental development, we deployed
one control system such as Reporter.

The Reporter
Initially, the proceed each
control computer system out of Reporter and
generate single TMO specification, as shown in

contains a contro] system.

system engineers

Figure 3. The specification in Figure 3 shows a
more complete specificationstructure than shown
in Figure 2. It has the autonomous activation
condition for the spontaneous method, the input
both the
spontaneous and the service methods, and the
initiation condition for the service method.

and output specifications for

» The method
describes the actions of picking data during the

input specification for a
execution of the method such as receiving the
data coming from the external client in the form
of call parameters, picking data from the object

data store, or picking data from the input
devices.
» The output specification for a method

describes the action of sending data to other
TMOs, sending data to the output devices, and
depositing data into the object data store.

» The initiation condition for the service
method describes when the service method
execution can be initiated after being called by a
client. It is in a sense a concurrency specification.

Now Mini-Theater
objects. The system engineering team IS now

is a network of three

ready to give the computer engineering team the
structuredin the
TMOs, plus an overall specification of the type.
in the
Reporter such that the computer system follows

specification form of three

Embed one control computer system
the chosen control theory logic to control the
chosen sensorssuch as radars.

In the real time simulation techniquesbased on
TMO object modeling, we have observed several
T™MO
TMO object modeling has a strong traceability

advantages to the structuring scheme.
between requirement specification and design,
cost-effective high-coverage validation, autonomous
subsystems, easy maintenance and flexible framework

for requirement specification.

Iv. Conclusion

We believe that using this scheme for the
uniform, integrated design of complex real time
their
simulators offers great potential in significantly

systems and application environment
reducing the development costs and increasing
the dependability of the real time systems.
Also,the goal of the TMO structuring scheme, is
to realize RT computing in a general manner not
alienating the main-stream computing industry
and yet enabling the system engineer to
confidently produce certifiable real time simulator
for safety-critical applications.

Although the potential of the TMO scheme
has been amply demonstrated, much further
research efforts are needed to make the TMO
structuring technology easily accessible to
Further development of

support middleware,

common practitioners.
T™O
running on new-generation RT kernels

especially those
and

multiprocessor hardware, is a sensible topic for

861

A FHRFAGE =24 A6H A6Z

T™O
of determining the

future research. Tools assisting the

designer in the process
response time to be guaranteed are among the

most important research topics.

References
[1] A. Attoui and M. Schneider, "An object-
oriented model for parallel and reactive
systems”, Proc. IEEE CS 12th Real-Time

Systems Symp., pp. 84-93, 1991.

[2} K. H. Kim et al,” A timeliness-guaranteed
Kermel model DREAM kemel and implementation
techniques”, Proc. 1995 Intl Workshop on
Real-Time Computing Systems and Applications
(RTCSA 95), Tokyo, Japan, pp. 80-87. Oct.
1995.

[3] K. H. Kim, C. Nguyen, and C. Park, "Real-
time simulation techniques based on the
RTOXk object modeling”, Proc. COMPSAC 9%
(IEEE CS Software & Applications Conf.),
Seoul, Korea, pp. 176-183, August 1996.

(41 K. H Kim and C. Subbaraman, “Fault-
tolerant real-time objects”, Commun. ACM
75-82. 1997.

[5] K. H. Kim, C. Subbaraman, and L. Bacellar,
“Support for RTOk Object Structured
Programming in C++", Control Engineering
Practice 5 pp. 983-991, 1997.

[6] K. H. Kim, "Object Structures for Real-Time
Systems and Simulators”, IEEE Computer 30
pp.62-70, 1997.

[71H. Kopetz and K. H. Kim, "Temporal
uncertainties in interactions among real-time
objects”, Proc. IEEE CS 9th Symp. On
Reliable Distributed Systems, pp. 165-174,
Oct. 1990.

862

R Rp2H

LtAHE(Sang-dong Ra)
1968 2AMdigte A7 &

1980 HA=digw oy &

(F&AAh

1995d Addittu giEd &4

(F &AL

199513 ~1996% Dept. of Electrical & Computer
Eng. Univ. of California Irvine @3+

1998'd Zdoistn AAANLE 2% 99

19734 ~dA zAXdga FREFHE wF

200134 ~20028 Dept. of Electrical & Computer

Eng. Univ. of California Irvine @724

¥AAER AN B4, UAE F4Y, deolg 2
°]E &4, TOM, A 2EAHY T

X &t (Chan-Joo Jeong)

1993 =Addge HFH3EH
EA(F A
19963 ZAdisty FHFEHESH

dete (T

19973~ 87 zAdstL AFH

Fet3} w5 R

19979 ~2002 ¢AR A AFEARY zas

wBALE AN E4, AHY F4, doy 2
o554, TOM %

