Abstract
The removal efficiency of heavy metals by chitosan complex isolated from biological industrial waste was investigated through laboratory experiments. The results of the study are as follows. The adsorption kinetics of heavy metals were reached the equilibrium adsorption in approximately 30 minutes and the removal efficiency were showed 70.7~97.4%. The effect of temperature on heavy metals adsorption by chitosan complex shows that as the temperature increased, the amount of heavy metals adsorption per unit weight of chitosan complex increased. The correlation between amount of heavy metals adsorption per unit weight of chitosan complex and temperature were obtained through the coefficient of determination($R^2$). $R^2$ values were 0.75(p<0.05), 0.99(p<0.05) and 0.98(p<0.05) in Hg, Mn, and Zn, respectively. The injected chitosan complex in which 0.1 g was adsorpted highly and the removal of heavy metals was found to have the best removal efficiency A linearized Freundlich equation was used to fit the acquired experimental data. As a result, Freundlich constants, the adsorption intensity(I/n) was 0.5564, 0.4074, 0.5244 on the Hg, Mn, Zn, respectively And the measure of adsorption(k) was 2.2144, 1.6963, 2.0792 on the Hg, Mn, Zn, respectively. So, it was concluded that adsorption of heavy metals by chitosan complex is effective.