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On Nonovershooting or Monotone Nondecreasing Step Response
of Second-Order Systems

Byung-Moon Kwon, Myung-Eui Lee, and Oh-Kyu Kwon

Abstract: This paper has shown that the impulse and the unit step responses of 2nd-order systems can be computed by an analytic
method. Three different 2nd-order systems are investigated: the prototype system, the system with one LHP(left half plane) real zero
and the system with one RHP(right half plane) real zero. It has also shown that the effects of the LHP or the RHP zero are very
serious when the zero is getting closer to the origin on the complex plane. Based on these analytic results, this paper has presented two
sufficient and necessary conditions for 2nd-order linear SISO(single-input/single-output) stable systems to have the nonovershooting
and the monotone nondecreasing step response, respectively. The latter condition can be extended to the sufficient conditions for the

monotone nondecreasing step response of high-order systems.
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1. Introduction

In many control problems, it is often required that the step re-
sponse of the system displays no extrema such as undershoots
or overshoots. If this requirement is not satisfied, it sometimes
causes serious damages to the environments or to the system it-
self [1]. Moreover, the local extrema are also unacceptable for
certain control plants [2]. Hence, it could be practical and theo-
retical interest in control problems that the step response of the
closed-loop system does not have any local extrema. It is noted
that the step response has no local extrema in the whole control
time if and only if it is monotonically nondecreasing in the tran-
sient response. In the recent years, many works were devoted
to find explicit conditions for the nonovershooting or the mono-
tone nondecreasing step response [2], [3], [4], [5], [6]. These
works however have been deal with the sufficient conditions to
the specified system with the only real zeros and real poles.

The prototype 2nd-order system has been well-studied in the
classical textbooks since the impulse and the unit step responses
can be computed by analytic methods [7], [8]. For the 2nd-order
system with one LHP(left half plane) or RHP(right half plane)
real zero, however, the effects of the zero have been illustrated
only through some numerical examples [7], {8]. Even though
they have qualitatively shown that the peak undershoot and the
maximum overshoot increase significantly in the step response
when the RHP and the LHP real zero approach the origin, re-
spectively [7], [8], {9], analytical results are not given yet to
compute the exact values.

In this paper, the impulse and the unit step responses of all
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2nd-order systems are computed by the analytic method. Us-
ing the Laplace transform technique, it is shown that the peak
undershoot and maximum overshoot of those systems can be
analyzed on the time-domain and explicitly presented by some
analytic equations. These analytic results would be useful un-
derstanding about the effects of the LHP or the RHP real zero
in 2nd-order systems. Based on these analyses, we present the
sufficient and necessary conditions for the nonovershooting or
the monotone nondecreasing step response of 2nd-order sys-
tems. The proposed results can be extended to the sufficient
conditions for the monotone nondecreasing step response of the
high-order systems. They will be used very easily for the con-
troller design since these conditions are formulated by the only
pole-zero configurations of the systems.

The layout of this paper is organized as follows: In Sec-
tion 2, we summarize the impulse and the unit step responses
of 2nd-order systems, and analyze transient response specifica-
tions such as the peak undershoot or the maximum overshoot.
In Section 3, we present the sufficient and necessary conditions
for the nonovershooting or the monotone nondecreasing step
response of the systems. The concluding remarks are given in
Section 4.

II. Transient response analysis of second-order
systems
In this section, the impulse and the unit step responses of 2nd-
order systems are summarized. These time-domain responses
give some useful understanding for the transient characteristics,
e.g., overshoot, undershoot, settling time, etc., which have been
computed through three steps [11] as follows:

1) Compute the impulse response g(t) and the unit step re-
sponse y(t) of 2nd-order systems using Laplace transform
method provided that the systems are relaxed at time t = 0
and stable.

2) Compute the peak undershoot time t, and the maximum
overshoot time ¢,,, which are the first and the second time
points such that g(¢) = 0, respectively.

3) Compute the peak undershoot Y, = y(t,) and the maximum
overshoot Yo, = y(tm).
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Note that the system has the monotone nondecreasing step re-
sponse if and only if g(t) > 0, and the minimum phase system
does not have undershoot phenomena [3], [4], [6], [9]. Here,
three types of the systems are investigated: the prototype sys-
tem, the system with one LHP real zero, and the system with
one RHP real zero. It is noted that [11] has dealt with only the
last case.

1. Prototype second-order system

Let us consider the prototype 2nd-order system as follows:

Wi

52+ 2lwns + w?’

G(s) = (1)

where wy, is the undamped natural frequency and ¢ is the damp-
ing ratio of the system. It can be described by four cases with
respect to the value of damping ratio . Since the system has
been already well-studied in the control textbooks [7], [8], it is
briefly summarized in this section.
1.1 Undamped case (¢ = 0)

When ¢ = 0, system (1) has two complex conjugate imagi-
nary poles at s = tjwn. For teq0, the impulse response g(t)
and the unit step response y(t) can be calculated by

9(t) = wn sinwyt, 2

y(t) = 1 — coswnt, €)]
respectively.

1.2 Underdamped case (0 < ¢ < 1)
In this case, system (1) has two complex conjugate poles as
follows:

P1 = —(Wwn + jwq, 1 = —Cwn — jwa, 4

where wg = wn+/1 — (2 is the damped natural frequency. For
t > 0, the impulse and the unit step responses can be written by

Wn, 7(w t .
t) = ————e """ sinwgt, %)
N
e Swnt
y(t) =1- ﬁ sin (L(Jdt + ¢1) s (6)
where
1— (2
é1 = tan ' LS 7
¢
Step response (6) has the maximum overshoot
__ g7
Vi =e VI=¢ (8)
at the maximum overshoot time
b = —. ©)
Wd

Equation (8) shows that the maximum overshoot of the unit step
response is the function of the only damping ratio ¢.

1.3 Critically damped case ({ = 1)
If ( = 1, the two poles of system (1) are nearly equal at

s = —wn. Hence, the impulse and the unit step responses can
be computed by

g(t) = wnte” ", (10)

y(t) =1—e " (1 +wnt) (n

for t > 0, respectively. In this case, system (1) has the mono-
tone nondecreasing step response since g(t) > 0 for t > 0.

1.4 Overdamped case (¢ > 1)
In the overdamped case, system (1) has two distinct real poles
as follows:

P2 = —CwntwnvVC% — 1, p3 = —Cwn—wny/¢2—1. (12)

For t > 0, the impulse and the unit step responses can be cal-
culated as follows:

g(t) = Ay [eP?' —eP3'] (13)
pat pat
y(t) =1 — Ay [em - ep2 ] : (14)
where
Aq (15)

Wn
2,/ —1
Since p3 < p2 < 0, or equivalently, g(t) > 0 fort > 0,
the overdamped prototype 2nd-order system has the monotone
nondecreasing step response like the critically damped case.
2. Second-order system with one LHP real zero
Consider the 2nd-order system with LHP real zero at s = —a
as follows:
qu
=(s+a)
52 + 20w, s + wd’
where a > 0. Note that the DC gain of system (16) is normal-
ized by 1. If the LHP zero infinitely approaches the left side on
the complex plane, then system (16) is the same as the prototype
2nd-order system.

2.1 Undamped case (( = 0)
In the undamped case, the impulse and the unit step responses

G(s) = (16)

can be calculated by

g(t) = Azsin (wnt + ¢2) , amn
y(®) = 1= 22 sin (—nt + ) (1)

for t > 0, where
Ay = Lﬁ\/ a? +w%.
a

L w 1 a
¢2 =tan ' 2 g3 =tan”' —.
a Wn

19)

When the LHP real zero goes to —oo on the complex plane,
g(t) and y(t) are the same as those of the undamped prototype
2nd-order system.
2.2 Underdamped case (0 < ¢ < 1)

For ¢t > 0, the impulse and the unit step responses can be
calculated as follows:

2
wh a—(wn .

g(t) = Z2e ¢t lecoswat + —Cﬁsmwdt
a Wy

Agefgwnt sin (wdt -+ ¢)4) , a> (wn, 20)

_ Wn ~Gunt
¢

Aze”$“ntgsin (—wat + ¢5), a < (wn,

Msinw t
av/1—¢2 ¢
1- é“Qie_c“’"tsin (wat + ¢6), a > &,
wn ¢ @1
w

— t
= 1 — e %"t coswat, a=

cos wyt, a = (wn,

y(t)=1 — e con* [cos wat +

Az _cont .
1— 236 "ts1n(~wdt+¢7),a<w—,
Wn ¢
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where
Ay = W a? — 2lwna + w2
a 1-¢2 ’
¢4 = tan71 %, (Z)5 = tan_l ﬁ, (22)
/17 2 /1 (2
¢6 :tan_l a—..g_’ ¢7:tan71 _CE.—C
Ca_wn Wn, —Ca

Step response (21) has the maximum overshoot
_C(r—04)

1
Ze V1= /a2 — 2wpa+ w2, a> (wn,

a

/ _ (44
Yin = 41 ~ CQ@ 2y/1-¢2
C k)

a —= Cw"H

Sop

1 -
Ze V1i-¢? \/m7 a < (wn,

a

(23)
which occurs at the maximum overshoot time
™ — ¢4
Wq
s

* a'><-w717

mv G = (Wn, 24)

?s

—, a < wn,
Wd

respectively. Note that if the LHP zero infinitely approaches
the left side on the complex plane, these specifications are the
same as the cases of the prototype 2nd-order system. However,
the maximum overshoot becomes infinitely large if it is getting
close to the origin on the complex plane.
2.3 Critically damped case (¢ = 1)

When ¢ = 1, the impulse and the unit step responses of sys-
tem (16) can be calculated by

w721, —wnt
9(t) =21+ (a—wn) e ™, (25)

y(t)=1— [l + %l (a —wn) t] et (26)

respectively. If —a > —wn, i.e. the LHP zero is larger than the
poles, then system (16) has the maximum overshoot

Yo = [T “] emona @7
a
at the maximum overshoot time
1
tm = . (28)
Wy — a

When the LHP zero is getting closer to the origin on the com-
plex plane, the maximum overshoot becomes infinitely large.
However, system (16) has the monotone nondecreasing step re-
sponse since g(t) > 0 fort > 0if —a < —ws, or equivalently,
if the LHP zero is smaller than the poles.

2.4 Overdamped case (¢ > 1)
In the overdamped case, the impulse and the unit step re-
sponses can be computed by

A
g(t) = 71 [(a+p2) e’ — (a+ps)e™'], (29)
y(t) =1— é a+p381)3t _ a’+p26p2t
a p3 P2

(30)

for t > 0, respectively. If —a > po, i.e. the LHP zero is
larger than the dominant pole, then system (16) has the maxi-
mum overshoot

:4_1 a +p2 epztm _ a +p3 6p3tm
a p2 P3

where £, is the maximum overshoot time, which is given by

1 a+p3
In ——

typp = —— R
p2—p3s a-+p2

(32)
It is noted that g(¢) > 01in (29) if and only if —a < p3. In other
words, the overdamped 2nd-order system with an LHP real zero
has the monotone nondecreasing step response if and only if the
LHP zero is smaller than the dominant pole.
3. Second-order system with one RHP real zero

Let us consider the 2nd-order system with one RHP real zero
at s = b as follows:

w2
(s 1)

Gls) = 82+ 20wns + w2’

(33)
where b > 0 [11]. Note that system (33) has the initial under-
shoot in the step response owing to one RHP real zero [9], [10],
[11], [6]. Similar to the system with an LHP real zero, if the
RHP zero infinitely approaches the right side on the complex
plane, then system (33) is the same as the prototype 2nd-order
system.

3.1 Undamped case (¢ = 0)
In this case, the impulse and the unit step responses of system
(33) can be calculated by

g{t) = Assin (wnt — ¢g), (34)

y(t) =1 2 sin (ot + 9o), G3)

where

Ay = -u;)—n\/b2+w%,

g = tan™" ﬂ, g = tan~* —
b Wn

for t > 0. Equations (34) and (35) imply that the system (33)
has the peak to peak values of £ A4 and 1 £ As/w, in the
impulse and the unit step responses, respectively. These become
infinitely large when the real RHP zero is getting closer to the
origin on the complex plane. Also, when the real RHP zero goes
to 0o, those responses have the bounds as follows:

(36)

—wn < lim g(t) < wn, (37)
0< lim y() <2, (38)

which are the same results as the prototype 2nd-order system.

3.2 Underdamped case (0 < ( < 1)
In the underdamped case, the impulse and the unit step re-
sponses can be computed by

g(t) = Ase “ntsin (wat — ¢10), (39

As _cot .
y(t)=1-— w—5e “rtsin (wat + d11) 5 (40)

n
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where
Ao = Wn b2 + 2Cwnb + w2
5 — b 1 CQ 3
41
bro=tan"' —% 4 —tan~" byvl-¢
b+ Cws’ Ch+wn

The peak undershoot Y}, and the maximum overshoot Y;,, occur
at the peak undershoot time ¢, and the maximum overshoot time
t.m, respectively, and these are explicitly formulated as

1
Yp =1- Ee—anfp \Y4 b2 + ngnb + w‘%y (42)

= 22, (43)
Wd
1 —Cwnt
Y = ¢ 702 4 2Cwnb + Wi, (44)
tm = M. (45)
wd

If the RHP real zero is getting closer to the origin on the com-
plex plane, the peak undershoot and maximum overshoot ex-
tremely large, i.e.

lim Y, = —oo, (46)
b—0t

lim Y, = co. (47)
b—0+

Note that when the RHP zero goes to oo on the complex plane,
these specifications are the same as those of prototype 2nd-order
system.

3.3 Critically damped case ({ = 1)

If { = 1, the impulse and the unit step responses can be
written by
2
Wn —wnt
g(t) = - [b+wn)t —1e ™, (48)
Wn —wnt
y(®) =1- [1+ 52 Grw)ef e, @)

for t > 0, respectively. Step response (49) has the peak under-
shoot
Y, =1- [1+“’—b"] T, (50)

which occurs at the peak undershoot time

1

ot b b

tp =
The overshoot however does not appear in step response (49).
Moreover, if the real RHP zero is as far as infinitely to the right
on the complex plane, the undershoot phenomenon does not ap-
pear anymore, and if it is getting closer to the origin, the peak
undershoot becomes infinitely large.

3.4 Overdamped case (( > 1)
In the overdamped case, the impulse and the unit step re-
sponses can be computed by

g = G [0 -p) @ — b-p) ], (52)

y(t)=1- % [I”p—;l’emf - ”“p—gbe”t , (53)

respectively. The peak undershoot is given by

Y, = 1- A |p2—b (b~p3>"2p2ps
b D2 b—p2
p3 (54)
psb (b vpa)
ps \b—p2 ’
which occurs at the peak undershoot time
1 —

1 = In 2= P2 (55)

2uwnA/C2—1 b—p2

It is noted that the overdamped 2nd-order system with the RHP
real zero does not have the overshoot in the step response like
the critically damped case.

III. Nonovershooting or monotone nondecreasing
step response

Let us investigate the nonovershooting or the monotone non-
decreasing condition in the step response of 2nd-order systems
based on the analyses of the previous section. Such condition
is often required in the control system design even though it
causes a slower response. First of all, the next result states
the condition for the nonovershooting step response of the 2nd-
order systems.

Theorem 1 : The 2nd-order systems have the nonover-
shooting step responses if and only if

¢ =1, (56)

where ( is the damping ratio of the systems.

Proof :  From Section II, the overshoot only appears in the
undamped and the underdamped cases of all 2nd-order systems.
Hence, the systems have the nonovershooting step response if
and only if they are the critically damped and the overdamped
ones, which completes the proof. |
Also, we can obtain the sufficient and necessary condition for
the monotone nondecreasing step responses of 2nd-order sys-
tems.

Theorem 2 : The 2nd-order systems have the monotone
nondecreasing step responses if and only if
M =21
(2 z < pa,
where ¢, z and pq are the damping ratio, the zero and the dom-
inant pole of the systems, respectively.

Proof : The prototype 2nd-order system has the nonnegative
impulse response if and only if it is the critically damped and
the overdamped cases. The 2nd-order system with an LHP real
zero also has the nonnegative impulse response if and only if
it is the critically damped and the overdamped ones with z <
pq. Finally, the system with an RHP real zero does not have
the nonnegative impulse response. Hence, it comes from the
combination of three cases, which completes the proof. |
Based on the results of Section 1I, it can be seen that the 2nd-
order system with RHP real zero always has the undershoot phe-
nomenon in the step response without relation with the value of
¢. If ¢ > 1, however, the step response of the 2nd-order sys-
tem does not have the overshoot even though it has an RHP real
zero. Note that some papers provide some sufficient conditions
to avoid extrema in the step response of SISO systems with real

zeros and poles [3], [4], [6].
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Theorem 2 can be extended to the sufficient conditions for
high-order systems as follows:

Lemma 1: Let us consider transfer functions {G;(s)} for
© = 1,2,.--,n, with the monotone nondecreasing step re-
sponse, then the series system

Gs(s) = Gi(s)Ga(s) - Gn(s) (57)

also has the monotone nondecreasing step response.
Proof : In the time-domain, G (s) can be written by

gs(t) = gr(t) % ga(t) % -~ % gn(t), 't >0, (58

where ‘x* denotes the convolution. Since g;(t) > 0 fori =
1,2,---,n, gs(t) > 0 fort > 0, which follows from the def-
inition of convolution. Hence, G(s) also has the monotone
nondecreasing step response, which completes the proof. |
Lemma 2: If {Gi(s)} fori = 1,2, -, n, have the mono-
tone nondecreasing step response, then the parallel system

Gp(s) = Gi(s) + Ga(s) + - + Gnls) (59)

also has the monotone nondecreasing step response.
Proof :  Since ¢:(t) > 0, fori = 1,2,---,n, the impulse
response g, (t) is nonnegative, i.e.

gp(t) = g1(t) + g2(t) + -+ gult) >0, "t >0, (60)

or equivalently, G,(s) also has the monotone nondecreasing
step response, which completes the proof. |
Hence, the total system formed by series or parallel connec-
tions of the subsystems with the monotone nondecreasing step
response also has the monotone nondecreasing step response. It
is noted that the series system has the slower step response than
those of ali subsystems. In the case of the system without finite
zeros, it always has the monotone nondecreasing step response
if the system has the only real poles.

Example 1: Let us consider a series system G (s) =
G1(5)G2(s)G3(s), where the subsystems are

Gils) = o

20
P GG o
Gy(s) = 1.5(s +2)

(s +1)(s+3)’

All these subsystems have the monotone nondecreasing step re-
sponse. From Lemma I, the total system G5(s) also has the
monotone nondecreasing step response, which can be verified
in Fig. 1.

Example 2 : Let us consider a parallel system Gp(s) =
Ga4(s) + G5(s) + Ge(s), where the subsystems are

Gals) = s 4lr 6’

10
Gs(s) GFD(T5) (62)
Cols) = 0.5(s + 2)

(s+1)(s+3)°

From Lemma 2, the total system G, (s) also has the monotone
nondecreasing step response since all the subsystems have the
monotone nondecreasing step response. It can be shown in Fig.
2.

Step Responses of Systems
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Fig. 1. Step responses of the systems in Ex. 1.
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Fig. 2. Step responses of the systems in Ex. 2.

Iv. Conclusions

In this paper, we have analyzed the characteristics of three
different 2nd-order systems: the prototype system, the system
with LHP real zero, and the system with RHP real zero. We
also have computed the peak undershoot Y}, the peak under-
shoot time £,, the maximum overshoot Y}, and the maximum
overshoot time ¢, in the unit step response of the systems.
Analytic results in this paper will provide some useful under-
standing about the effects of the LHP or the RHP real zero in
2nd-order systems. Moreover, it has presented the sufficient
and necessary conditions for the nonovershooting or the mono-
tone nondecreasing step response of 2nd-order systems. It also
has formulated the sufficient condition for the monotone non-
decreasing step response of high-order systems.

Although the sufficient and necessary conditions for the
nonovershooting or the monotone nondecreasing step response
of 2nd-order systems are perfectly characterized by the pole-
zero configurations, the conditions for high-order systems are
the only sufficient ones, so it will require further research to
find necessary conditions for those systems.

References

{11 H. Kobayashi, “Output overshoot and pole-zero configu-
ration,” Proc. 12th IFAC World Congr., Vol. 3, pp. 73-76,
1993.

[2] M. El-Khoury, O. D. Crisalle, and R. Longchamp, “Influ-



288 ICASE: The Institute of Control, Automation, and Systems Engineers, KOREA Vol. 4, No. 4, December, 2002

ence of zero locations on the number of step-response ex-
trema,” Automatica, Vol. 29, No. 6, pp. 1571-1574, 1993.

[31 S. Jayasuriya and M. A. Franchek, “A class of trans-
fer functions with non-negative impulse response,” Trans.
ASME J. of Dynamic Syst., Meas., Control, Vol. 113, pp.
313-315, 1991.

[4] A. Rachid, “Some conditions on zeros to avoid step-
response extrema,”’ IEEE Trans. on Automat. Contr., Vol.
40, No. 8, pp. 1501-1503, Aug. 1995.

[5] B. M. Kwon, H. S. Ryu, and O. K. Kwon, “Some condi-
tions for monotone nondecreasing step response with the
fastest rise time,” Proc. American Contr. Conference, pp.
552-557, June 2001.

[6] B. M. Kwon, Zeros Property Analyses with Applications
to Control System Design, Ph.D Thesis, Inha Univ., Feb.
2002.

Byung-Moon Kwon

He was bom in Pyongtaek, Korea, in
1976. He received B.S. degree and
Ph.D. degree in Electrical Engineering
from Inha University in 1998 and 2002,
respectively. He is now a senior re-
searcher in Guidance & Control Dept.,
Space Technology R & D Division, Ko-
rea Aerospace Research Institute. His

main research interests are in the areas of linear control sys-
temns, navigation and guidance control systems, and system lim-
itations.

Oh-Kyu Kwon

He was born in Seoul, Korea, in 1952.
He received B.S. and M.S. degree in
Electrical Engineering and his Ph.D.
degree in Control and Instrumentation
Engineering from Seoul National Uni-
versity in 1978, 1980 and 1985, respec-
tively. He was at Dept. of Electrical

Engineering, Inha University, as an As-
sistant Professor in 1984. He was also at Dept. of Electrical and
Computer Engineering, the University of Newcastle, Australia
as a Visiting Professor, during the academic year from Aug.
1988 to Aug. 1989. He is now a Professor at School of Elec-
trical and Computer Engineering, Inha University. His main
research interests are in the areas of robust estimation, fault de-
tection and diagnosis, system identification and digital control
applications.

[71 B. C. Kuo, Automatic Control Systems, Tth ed., Prentice-
Hall, Inc., 1995.

[8] K. Ogata, Modern Control Engineering, 3rd ed., Prentice-
Hall, Inc., 1997.

[91 B.A.Ledn de laBarra, “On undershoot in SISO systems,”
IEEE Trans. on Automat. Contr., Vol. 39, No. 3, pp. 578~
581, Mar. 1994.

[10] M. Vidyasagar, “On undershoot and nonminimum phase
zeros,” IEEE Trans. on Automat. Contr., Yol. 31, No. 5,
pp- 440, May 1986.

[11] B. M. Kwon, H. S. Ryu, and O. K. Kwon, “Transient re-
sponse analysis and compensation of the second order sys-
tem with one RHP real zero,” ICASE, Trans. on Contr,
Automat. and Sys. Engr., Vol. 2, No. 4, pp. 262-267, Dec.
2000.

Myung-Eui Lee

He received B.S., M.S. and Ph.D. de-
grees in Electrical Engineering from
Inha University in 1985, 1987 and
1991, respectively. From Dec. 1986 to
Sep. 1995, he served as a research engi-
neer at Hyundai Electronics Industries
Co., LTD., Ichon, Korea. He joined
KUT(Korea Univ. of Technology and
Education), Chonan, Korea, in 1995 as an Associate Profes-
sor in Dept. of Information and Communication Engineering.
His research interests include satellite attitude and orbit control
systems, microprocessor and computer applications in control
systems, and real-time control systems.



