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Fault Diagnosis and Accommodation of Linear Stochastic

Systems with Unknown Disturbances

Jong-Hyo Lee and Joon Lyou

Abstract: An integrated robust fault diagnosis and fault accommodation strategy for a class of linear stochastic systems subjected to
unknown disturbances is presented under the assumption that only a single fault may occur at a given time. The strategy is based on
the fault isolation and estimation using a bank of robust two-stage Kalman filters and introduction of the additive compensation input
for cancelling out the fault’s effect on the system. Each filter is set up such that the residual is decoupled from unknown disturbances
and fault with the influence vector designed in the filter. Simulation results for the simplified longitudinal flight control system with

parameter uncertainties, process and sensor noises demonstrate the effectiveness of the present approach.
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I. Introduction

In the past two decades, a model-based fault diagnosis (FDI,
fault detection and isolation) methods have been studied under
the requirement of improving the reliability and maintainabil-
ity of control systems [1][2][3]. If the mathematical model is
a very accurate representation of the system behavior, model-
based FDI methods can be used to diagnose faults correctly and
reliably. However, in practice, the system may not be free from
unknown disturbances, modeling errors and noises, requiring
the FDI algorithms robust enough.

One of the most successful robust FDI approaches for
stochastic systems is the use of disturbance decoupling prin-
ciple and Kalman filtering technique, in which the residual is
designed to be decoupled to unknown disturbances, modeling
errors and noises, whilst sensitive to faults. In the disturbance
decoupling design, the distribution matrix for disturbances must
be known a priori although the actual disturbances remain un-
known. However, the robustness problem in practice is difficult
to solve because its distribution matrix is normally unknown.
For this, an approach has been suggested, where unknown dis-
turbances were represented approximately with an estimated
distribution matrix {4][5]. In this way, an optimally robust so-
lution is achievable. This approaximate strategy has extended
the application domain of disturbance decoupling based robust
FDI approaches. Recently, some progress has been made in the
design of optimal filtering, by an optimal observer [6] and a spe-
cial structure of the full-order Kalman filter [7], for stochastic
systems with unknown disturbances. Darouach et al. [§8] pro-
posed two-stage Kalman filter for systems affected by unknown
inputs and constant biases, and optimal two-stage Kalman filter
in the presence of random biases in [9].

Fault accommodation (FA) method is provided to make the
system stable and retain acceptable performance unter the fault.
All present FA approaches can be classified into two groups.
The first group is based on FDI and the second one is indepen-
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dent of FDI. The essence of the FDI-based FA approaches is
to detect and isolate the fault on-line, and then to modify or re-
design the control law by using fault estimate from FDI stage
to make the faulty system stable, as shown in [10]. The second
group of FA approaches uses fixed controllers without consider-
ation for whether the fault has occurred or not. In [11], Frank et
al. adopted a fixed FA strategy against sensor faults by feedback
the estimated state instead of the measured output.

However, most of present model-based fault diagnosis ap-
proaches have considered the systems without uncertainties
[10][11], and although system uncertainties are considered, it
has been remained at fault detection level [6] or treated only for
a part, actuator faults [7] or sensor faults [11], among system
faults.

This paper extends Darouach’s two-stage Kalman filter [8][9]
for the stochastic systems with unknown disturbances and ran-
dom biases, and proposes the integrated robust FDI-based FA
strategy against actuator and sensor faults. It is assumed that
only a single fault may occur at a given time. The FDI module
is constructed based on simultaneous generation of the residual
set and estimation of the bias through a bank of the robust two-
stage Kalman filters. Each filter is set up such that the residual
is decoupled from unknown disturbances and fault with the in-
fluence vector designed in the filter, and that effects of process
and sensor noises are minimized. All components of the resid-
ual set are evaluated by using the hypothesis statistical test, and
the fault is declared according to the prepared decision logic.
Once the fault is indicated, the FA module is activated, and ad-
ditive fault compensation input is computed by using the fault
estimate from the filter with the influence vector of the indi-
cated fault and is combined to the nominal control law so that
its effect on the faulty system is cancelled out.

I1. System model and fault description
Consider the following discrete-time stochastic system de-
scribed by

Tir1 = Azg + Bu + Edi + wig
Czr + vk (€]

Yk

where z € R" is the state vector, yr, € R™ is the output
vector, ux € RP is the known input vector, and dr € RY is
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the unknown disturbance vector, Matrices A, B, C and E are
known matrices with appropriate dimensions. Without loss of
generality, it is assumed that E is of full column rank. wj and
vy are the process and the measurement noise sequences, re-
spectively.

Unknown disturbances Ed}. in system (1) may involve addi-
tive disturbances and modeling errors such as nonlinear terms in
the system dynamics, linearization and model reduction errors,
and parameter variations. The disturbances may also appear in
the output equation, however this case is not considered here be-
cause disturbances can be null by simply using a transformation
of the output signal ;.

In the system modeling, faults are described in two different
types; 1) additive faults, characterizing actuator or sensor faults,
2) multiplicative faults, designating plant faults. The typical
faults treated are actuator and sensor faults, and they are usually
described in the way of adding directly on the dynamics or on
the measurements of the system.

Thus, actuator faults consider a loss in the actuator effective-
ness and are represented by changing the matrix B as

By = B(I + diag(&;)) 2
with €2 = [¢21...¢% ... £9%]T and when the ith actuator
breaks down, {** = —1. Since By is an unknown matrix, rep-

resentation of the faulty system requires the introduction of an
unknown fault fi, which is equal to zero in the fault-free case

Tk+1 = Axg + Bux + Edi + F° fi + wi, 3)

. . T

where F¢ = [F%1 . .F% . .Fo%]| fp = [ PR PR l’:p] ’
and F** denotes the influence vector of the ith actuator fault
fi on the state xj. Likewise, sensor faults characterize a scal-
ing change in the state measurement and are represented by
modifying the matrix C' as

Cy = (I + diag(£x))C 4

with €° = [¢°1 ... ¢% ... £ ]T and expression of the faulty
system is
Yk = Cax + F° f§ +ox (5)

where F° = [F*1 - F% - F*m] fo = [fo - fot - 'f,j’"]T,
and F°¢ denotes the influence vector of the ith sensor fault f,*
on the output yy.

We assume that only a single fault may occur at a given time
and the fault is treated as the random bias. The system with an
actuator fault is thus modeled by replacing the state equation in

(1) as

ZTrt+1 = Azg + Buy + Edi + F* b, + wi
Begr = bp + wl ©)

and the one with a sensor fault is modeled by substituting the
output equation in (1) as

yr = Cxg + F¥bg + vg
b
bri1 = br + wy N
where the process noise w?, the bias noise w?, and the measure-

ment noise vy are zero mean uncorrelated random sequences
with covariance matrices W® > 0, W® > 0and V > 0,

respectively. The initial values z¢ and bo are assumed to be
uncorrelated with the white noises wf, w) and vy. Let zg
and bo be the Gaussian random variables with E{zo} = Zo,
E{(xo — i‘o)(ﬂ:o — Eo)T} =Py >0, E{bo} B Bo, E{(bo —
I_)o)(bo — l_)o)T} = Pg >0, E{(xo — fo)(bo — BO)T} = sz,

I1. On-line FDI algorithm

Fault diagnosis generally divided into the two tasks; 1) fault
detection, deciding whether or not a fault has occurred, 2) fault
isolation, deciding which element of the system is faulty. To
achieve these tasks, the basic approach mainly depends on the
residuals composed of the state and the bias estimation error,
where the state and the bias estimate are generated using a ro-
bust filter for the system subjected to unknown disturbances.
For estimation of both the state and the bias, the natural ap-
proach is to augment the bias as a part of the state, and to apply
the Kalman filter. But, the augmented Kalman filtering tech-
nique may not work effectively in case that the actuator fault
occurs because it acts on the system in the same way as the
unknown disturbances do. Thus, we use two parallel reduced-
order Kalman filter, called “two-stage Kalman filter”, which is
composed of the bias-free filter and the bias filter [8][9].
1. Robust two-stage Kalman filter

From the robust filtering context [6][7][8], the necessary and
sufficient condition for decoupling unknown disturbances is
given by

rank(E) = rank(CE) =q, ¢ <m (8)

meaning that the maximum number of disturbances cannot be
larger than the number of independent measurements.

To take into account the unknown disturbances in [9], the
gain matrices, LT 41 in the bias-free filter and Lt .1 in the bias
filter of the robust two-stage Kalman filter must be satisfied with
the following constraints

L; .CE = E
Ly CE =0 )

Eq. (9) have solutions if the conditions in (8) is satisfied,
then proceeding as in [8], the solutions can be explained eas-
ily and the robust two-sage Kalman filter for the stochastic sys-
tems with unknown disturbances and random biases is finally
obtained by substituting the expressions of gain matrices L¥ +1
and LZ+1 into the gain matrices f(,f_,_l and K,EH in [9]. Table
1 presents the entire algorithm for the robust two-stage Kalman
filter.

To be specific in the robust two-stage Kalman filter for system
(6), in case of the actuator fault (F'** = 0), (8) leads to

rank(E) = rank(CE) = q
rank([CE CF*])=q+1,¢<m—-1  (10)
while for the system (7), in case of the sensor fault (F'** = 0),
rank(E) = rank(CE) = q
rank([CE F*])=q+1, ¢<m—1 an

2. Residual generation and fault detection
To detect a fault, the residual can be generated using the out-
put estimation, yx/x = Cxr/k + F*2 by i, as

Th =Yk — Yusp = Cef + Fiep + vk (12)



272 ICASE: The Institute of Control, Automation, and Systems Engineers, KOREA Vol. 4, No. 4, December, 2002

Table 1. The algorithm of the robust two-stage Kalman filter

Trg1/h+1 = Tha1/kr1 + 5k+1/k+1bk+1/k+1

Pliijper = Pk+1/k+1 + Bk+l/k+1Pk+l/k+lﬁk+1/k+1
with

Zos0 = zo — Bosobo, /30/0 =P (P
Po/o =F - HO/OPOﬁO/o
Bias-free Filter
Tr1 /b1 = Top1/k + Loy Yot1
Pk+1/lc+1 - (I Kk+1C)Pk+1/k
+77k+1Hk+1Gk+1Hk+177k+1
with
_i+1 = le—kl + M1 i1
Mipr = E — K}?HCE
Iz, = [(CE)"Gi,CE| ™ (CE)" Gi 1,
where
Frs1 = Yet1 — CTria/k
Zpyr/e = AZgsi + Buk + obr sk — Brr1/kbrsk
Kiy = Pk+1/kCT /c+l
PEoy, = AP{ AT + W7 + aw P g
*ﬁk+1/kpk+1/kﬁg+1/k
Giy1 = CPI;EJrl/kCT +V
Bias Filter
bk+1/K+1 = bk + Lip1 V04
Pk:+1/k+1 - (I Kk+1Hk+1/k)Pk+1/k )T
+nk+1Hk+1Gk+1Hk+lnkz+l
with
L k1l = Kk+1 + Mo Mg
77k+1 = Kk+ICE
1= [(CE)TGk+1CE]71(CE) Gk+1
where
Vo1 = Fuer — Hepryubige
Kllz:-i-l = P£+1/kHE+l/sz;1
P£+1/k = PIS/k +Ww*
Ghir = Hep1e P Hip e + G
Coupling Equations
Hiqpix = F° + CBrgryr 5 F°F = 0 for the model (6)
Brtisksr = Brri/e — L1 Hey1/n
ar = APy + F* ; %t = 0 for the model (7)

1
Brt1/k = akPlg/kPI?+l/k

where e} = Ty — Ti/r and ed = by — b1 are the state and
the bias estimation errors. Note that these errors have minimum
variances. As we assumed, the noise sequences w, w? and
vy, are white Gaussian, the residual will also have the Gaussian
distribution.

Now, using the residual and its covariance, a residual evalu-
ation method is formulated. The well-known x? based hypoth-
esis test, which is referred in the related text and paper, can
be used to examine the residual and, subsequently to detect the
fault in case that the residual has Gaussian distribution. The two
hypotheses to be tested can be identified as Hy, the normal or
common fault mode which has no fault or only the fault with
the influence vector designed in the filter, and H1, the uncom-

mon fault mode which have other faults with the exception of
the common fault.

Under the normal or common fault condition, from eq. (12)
and the relation of the initial value, By,0 = PF°(P§)™", in
Table 1, the statistics of the residual can be represented as

E{T’k} =0
Ho = { cov{ry} = Wy = Cpk/ch F”P,f/kﬁk/kCT
—I—Cﬂk/kPk/kF —I—F*’Pk/szl +V
(13)
When an uncommon fault occurs in the system, the residual
statistics will be different from the normal or common fault
mode.

The task of fault detection is to distinguish which one be-
tween two hypotheses Ho and H;. Since the residual is of
Gaussian distribution, the test statistic Ay forms x? distribution
of M1 degrees of freedom.

k

=Y W (14)

i=k—M+1

with M being the window size and [ the dimension of r. The
remaining problem is to set a threshold value to which Ax is
compared for fault detection. Taking the reasonably low false
alarm rate into account, the threshold level T is chosen from
the 2 distribution table such that

pTObP\k Z TD/HO] = Pf (15)

where Py is the prescribed probability of false alarm. Then, we
can detect the fault using the following detection rule.

0 if e <Tp
= 1
S(rw) { 1 otherwise (16)

3. Fauit isolation

Fault isolation requires the generation of a residual set insen-
sitive to one fault and sensitive to the others. Thus, a bank of
two-stage Kalman filters is set up according to the system model
(6) with actuator fault and (7) with sensor fault. The ith filter
corresponds to the ¢th fault among p actuators and m sensors,
and uses the influence vector of the fault, F* fori = a1, - -, ap
(actuator index), s1, - -, Sm (sensor index). So, the ith resid-
ual is generated from the ith filter with F'¢¢ (F'*¢ = 0) or F**¢
(F** = 0) in the algorithm of Table 1.

The residuals generated from the bank of two-stage Kalman
filters in case of an actuator or sensor fault summarize as fol-
lows.

1) The residual of the ith filter in case of the jth actuator fault

(t=a1, " ,0p,81," ", 8m, J =401, ,ap)
= Cei + vk a7
where
€ht1 = (I = L1 C)F¥ by — (I — Li41C) F* bryie

+(I — Lg41C)Aeg + (I — L1 C)w
—Ly1ve41

ey = b — Le  CF% by 4+ L} (1 CF by,
—L} 1 CAef +wi — L1 (Cwi + vky1) (18)
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with
Lty = Ly + BerayrarLiva (19)
Tzi :Cei —Fsibk/k—f-vk (20)
where
k1 = (I = Lt 1C)F by + L1 F* by

+(I — Lg41CYAek + (I — L1 C)wi
—Lgy1vey1

epy1 = ep — LiyCF® by + LYy Foiby
—L7 1 CAef + wh — Liy1 (Cwf +vky 1) 21)

2) The residual of the ith filter in case of the jth sensor fault

(i:al,"'7ap,51,"‘,5m, j:‘sla"'as'm)

Tgi =Ces + Foiby + vy 22)

where

€ip1 = —Lpy1F9bp — (I — Ly 1C)F by
+(I — Lg41C) Ak + (I — L1 Chwy;
—Lgt (stwfé + Ukt1)

ehi1 = €p — Ly F¥by + Ly CF% by
—Ly  CAef 4+ (I — LY F9)w}, _
—Li 1 (Cwi + vks1) (23)

Tzi =C€§+stbk7Fsibk/k+Uk (24)

where

ekr1 = —Li1F¥ by + L1 F*oby i
+(I — Lg110)Ae + (I — L1 C)wyi,
— L1 (Fwy + veg1)

€hr1 = € — Liy1 F*bx + L} F by
~Lp i CAef + (I — L FoiYw}
—L} 1 (Cwi + vks1) (25)

From eq. (17)-(25), it is noted that, after a fault occurs, only
the filter corresponding to the fault (i.e. ¢ = 7) can estimate
the state and the bias correctly, and the residual from this filter
will be maintained the residual statistics in eq. (13), but the
residual statistics from the other filter will be deviated from eq.
(13) due to the wrong estimation of the state and bias. And it
is also noted that unknown disturbances FEdj do not affect all
of the residuals. It means that these residuals are robust against
unknown disturbances.

Now, each residual is examined through the hypothesis sta-
tistical test as in section IIL.2, and the resultant vectors, S®(r)
for residuals from the filters with F'** and S°(ry) for residuals
from the filters with F'** | are produced as

5%(re) =[S (ri) - S (re) -+ S5 (ri)] "
§(rk) = [ (rx) - 8% (ri) --- S (r)]T (26)

Then for fault isolation, S*(rx) and S° (7, ) in (26) are com-
pared to the fault signatures S®(ref, f;) and S°(ref, fi) which

are the column vectors of the fault signature matrices defined in
Table 2. Note that the 0" element of the fault signature matrices
are designated based on the underlying principle that only the
filter associated with the fault occurred can estimate the state
and the fault correctly. Now, if S%(r) coincides with a col-
umn of the actuator fault signature matrix in Table 2(a), the
corresponding fault indicator I(fa;) or I{fs) is set to “one”.
If I(fa,) = 1, the ith actuator is declared to be faulty. If
I(fs) = 1, we guess a sensor fault. Further, by checking if
S%(rk) is same as which column of the sensor fault signature
matrix in Table 2(b), the corresponding fault indicator I(fs,)
set to 1, and the ith sensor is declared to be faulty.

IV. Integrated FDIA strategy

After the fault is indicated, its effect on the system is com-
pensated using the fault(bias) estimate by, ;;, from the filter asso-
ciated with the fault. The concept of this approach is depicted in
Fig. 1. It should be noted the ability of the FA to compensate for
the fault is closely related to the result given by the FDI module
concerning the decision of whether an actuator or a sensor fault
has occurred.

f2, d, w, roov,
+ L
& U U %
f Controller 2 Actuator Plant Sensor Yi

1y Diagnosis/
Estimation

Accommodation

FA module FOI module

Fig. 1. Integrated FDIA scheme

In case of the actuator fault, the additive control input ug is
computed such that

B(ug +ug) + F* f* = Buj X))

where uy; is the nominal input without fault. Note that uf is
introduced to cancel out the unwanted input by the fault, f*. If
the matrix B is of full rank, uj, is obtained as

uf = —BTF% f (28)

where B is the pseudo-inverse of B, and actually by, /& is used
replacing f*. Even if B is not of full rank, there is a solution
(8]. If the control input is single, then F** = B, and (28)
reduces to

uf = —f (29)

If a sensor fault occurs, the corresponding measured output
may be different from its nominal value without fault. So, in
this case, rather than trying to modify the nominal control law,
we include a correcting term yg in the measurement equation
such that

Ye+ye = Car + F f) +vp +yi = Cxi v (30)

Then, using the fault (bias) estimate f., the faulty output is
compensated by

vk =—F"fi (31)
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Table 2. Fault signature matrices
(a) for actuator faults

S°() | S°(ref,nofault) | S*(ref, f1) | S°(ref,£.) | S°tredidy) | S (ref, )
S%1(r) 0 0 1 1 1
S%(r) 0 1 0 1 1
S% () 0 1 1 0 1
(b) for sensor faults

S°(r) S%(ref,nofault) Se(ref, f1) Sé(ref, fi) Sé(ref, fm)
S°1(r) 0 0 1 1
S (r) 0 1 0 1
S (r) 0 1 1 0

V. Simulation detection rule (16) is selected as T'p = 12.84 from x? distribu-

The effectiveness of the present FDIA strategy will be
demonstrated through computer simulations for the simpli-
fied longitudinal flight control system [6] whose discrete-time
model is given by

[0.9944 —0.1203 —0.4302
A = |0.0017 0.9902 —0.0747
i 0 0.8187 0
[ 0.4252 Ny
B=|-00082|,C=5 z=|w, (32)
0.1813 d;

where the state variables are pitch angle &, pitch rate w,,
and normal velocity 7, and the control input is elevator con-
trol signal. The covariance matrices for process and measure-
ment noise sequences are W® = diag{0.022, 0.022,0.002%}
and V = 0.022]3. The unknown disturbances usually stem
from perturbations in aerodynamic related coefficients, and it
is assumed that there are parameter perturbations like Aag; =
~0.5a2; and Aby = 0.5b2. Thus, disturbances Edy, is repre-
sented as

E=[010]"
di = [~0.0009 — 0.4951 0.0374] zx — 0.0041ux (33)

The purpose of the nominal control is to make the pitch
angle &, track the reference input r. For this, the integral,
Zk+1 = 2k + Ts(rr — yar), of the tracking error is first defined
and appended into the state vector, & = [z} zk]T, where
Ts = 0.1s is the sampling interval, ysx is the 3rd element of
the output vector yi, and Z is the augmented state. Then, un-
der the assumption that the state variables are available for mea-
surements, the LQ(Linear Quadratic) state feedback control law
ur = —K T can be implemented by choosing the weighting
matrices @ = diag{1,1,1,300} and R = 1.

As an actuator fault, we consider a loss in the actuator effec-
tiveness, abruptly(step wise), f¢ = —puy,0 < p < 1, orincip-
iently(ramp wise), fi = —d&kTs, § is small, with the influence
pattern, F'* = B. Likewise, a sensor fault is modeled by abrupt
changes, fi* = Az, or incipient variations, f* = 6kTs, § is
small, for the output measurement with F*¢ = C*.

Now, the FDI and FA capability has been evaluated under
various fault conditions. Fig. 2 shows the hypothesis test statis-
tics A in (14) under step fault in the actuator, and ramp fault in
the pitch angle sensor, respectively. The threshold on the fault

tion table with the window size M = 1, the residual dimension
[ = 3 and the false alarm probability Py = 0.005. Observing
this figure and many simulation results under other faults, all of
the faults have been detected, and isolated without false alarm
or missed alarm. The abrupt faults can be detected very fast,
usually it needs only one or two steps to detect the fault after
occurrence. The incipient faults can also be detected at an early
step.

Fig. 3 displays profiles of the fault estimate f?, the state 2
and the control input « with and without FA under step fault
in the actuator and step fault in the pitch angle sensor, respec-
tively. This figure and many simulation results under other
faults clearly demonstrate that the present approach has FA abil-
ity against such faults, whilst the nominal control has no FA
capability even under the sensor fault. In case of the actuator
fault, the system response reach their nominal value, but very
slowly, even without fault compensation because the actuator
fault affect the system as a perturbation, and mainly due to the
presence of the integral action in the controller.

50 50
v 55 )
D par Joi hbdn. Dol D Sosl )
0 20 40 60 80 0 20 40 60 80
50 50
25 J WM w5 [
N ) I plassdaakad
20 40 60 80 0 20 40 60 80
50 T 50
v w S j
0 g
20 40 60 80 20 40 60 80
50 i 50
% M s
a b a -
1] 20 40 60 80 0 20 40 60 80
Time (s} Time (s}
@ (b)

Fig. 2. Hypothesis test statistics A under the fault (a) in the
actuator(f®, step, p = 0.05) (b) in the pitch angle sensor(f*®?,
ramp, 6 = 0.05)

One remark is in order, let us check the necessary and suffi-
cient conditions (10) and (11) for decoupling unknown distur-
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Fig. 3. Trajectories of the fault estimate f*, state z and control
input % without(: - -) and with(—) FA under the fault (a) in the
actuator(f®, step, p = 0.5) (b) in the pitch angle sensor(f°3,
step, Azz, = 1.0)

bances. Since

rank(E) =rank(CE) =q¢=1
rank([CE F2))=1+#£2(=q+1) (34)

it follows that (11) is not satisfied for the pitch rate sensor(Sz)
case. In this case, the fault influence vector of the S sensor may
be represented as F'*2 = aCE, o = constant. So, according
to the relations (9) for decoupling unknown disturbances, the
residual from the filter with F°2 in case of the fault in the S2
sensor represents as follow.

2 = C(I — (L + F2LY)C)Aei_4
+C(I — (L + F2LY)C)wi_y — (Li + F*2L8)vy
(35)

where

€hey = —Lgy 1 F*%eh + (I — Ly 1C) Aef
+(I = L1 CYwi — LY F2 w0} — Ly 1ve
ey = ep— Liy1CAe} +wy — LE 1 (Cwi + vks1)

(36)

From the expression of bias estimation error in (36), we can
know that gain matrix L in the bias filter isn’t operated com-
pletely. Hence, although FDI ability is good as shown in fig. 4
under step fault in the S2 sensor, we can expect that the fault
estimate and FA ability will not be good enough.

VI. Conclusion
An integral framework has been given for the robust fault
diagnosis and accommodation of linear stochastic systems sub-
jected to unknown disturbances and actuator or sensor faults.
A bank of two-stage Kalman filters is adapted to estimate both
the state and the fault as well as to generate the residual set de-
coupled to unknown disturbancese but discernible by a fault.
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Fig. 4. Under the fault in the pitch rate sensor(f*2, step,
Azgr, = 1.0) (a) Hypothesis test statistics A (b) Trajectories
of the fault estimate f°, state v and control input u without(: - -)
and with(—) FA

Also, a simple decision logic based on hypothesis test statistics
is provided to identifiy the fault correctly. By the theoretical
explanations and interpreting the simulation results, the present
approach turns out to be effective enough no matter whether
there are abrupt or incipient faults. Also, the inherent parallel
structure makes it attractive for real-time and practical applica-
tions.

It has been recognized that the fault isolation problem of ac-
tuators and sensors is very difficult. A related further works is
to relax the rather restrictive decoupling condition and extend
to a plant fault of uncertain stochastic systems.
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