Mapping of the equine herpesvirus type 1 immediate-early protein interaction domain within the general transcription factor human TFIIB

  • Jang, Hyung-Kwan (Department of Infectious Diseases, College of Veterinary Medicine, and Bio-Safety Research Institute, Chonbuk National University) ;
  • Cho, Jeong-Gon (Department of Infectious Diseases, College of Veterinary Medicine, and Bio-Safety Research Institute, Chonbuk National University) ;
  • Song, Hee-Jong (Department of Infectious Diseases, College of Veterinary Medicine, and Bio-Safety Research Institute, Chonbuk National University)
  • Published : 2002.09.01

Abstract

We previously reported that the equine herpesvirus type 1(EHV-1) immediate-early protein(IE protein) physically interacts with the general transcription factor human TFIIB(Jang et al, J Virol 75:10219-10230, 2001). The interaction between the IE protein and TFIIB is necessary for the IE protein to efficiently transactivate the early TK and late IR5 EHV-1 promoters. A panel of deletion and truncation mutants of the TFIIB gene was constructed and employed in protein-binding assays to map the IE protein-binding domain within TFIIB. Evidence is presented that the first direct repeat of TFIIB interacts specifically with the EHV-1 IE protein.

Keywords

References

  1. Caughman GB, Staczek J, O'Callaghan DJ. 1985. Equine herpesvirus type 1 infected cell polypeptides: evidence for immediate-early/early/late regulation of viral gene expression. Virology 145: 49-61 https://doi.org/10.1016/0042-6822(85)90200-4
  2. Clements JB, Watson RJ, Wilkie NM. 1977. Temporal regulation of herpes simplex virus type 1 transcription : location of transcripts on the viral genome. Cell 12 : 275-285
  3. Gray WL, Bauman RP, Robertson AT, et al. 1987. Characterization and mapping of equine herpesvirus type 1 immediateearly, early, and late transcripts. Virus Res 8 : 233-244
  4. Gray WL, Bauman RP, Robertson AT, et al. 1987. Regulation of equine herpesvirus type 1 gene expression : characterization of immediate-early, early, and late transcription. Virology 158 : 79-87
  5. Honess RW, Roizman B. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14 : 8-19
  6. Roizman B, Kozak M, Honess RW, et al. 1975. Regulation of herpesvirus macromolecular synthesis: evidence for multilevel regulation of herpes simplex 1 RNA and protein synthesis. Cold Spring Harb Symp Quant Biol 39(Pt2): 687-701
  7. Weinheimer SP, McKnight SL. 1987. Transcriptional and post-transcriptional controls establish the cascade of herpes simplex virus protein synthesis. J Mol Biol 195 : 819-833
  8. Caughman GB, Robertson AT, Gray WL, et al. 1988. Characterization of equine herpesvirus type 1 immediate- early proteins. Virology 163 : 563-571
  9. Garko-Buczynski KA, Smith RH, Kim SK, et al. 1998. Complementation of a replication-defective mutant of equine herpesvirus type 1 by a cell line expressing the immediate-early protein. Virology 248 : 83-94
  10. Grundy FJ, Baumann RP, O'Callaghan DJ. 1989. DNA sequence and comparative analysis of the equine herpesvirus type 1 immediate-early gene. Virology 172:223-236 https://doi.org/10.1016/0042-6822(89)90124-4
  11. Smith RH, Caughman GB, O'Callaghan DJ. 1992. Characterization of the regulatory functions of the equine herpesvirus 1 immediate-early gene product. J Virol 66 : 936-945
  12. Smith RH, Holden VR, O'Callaghan DJ. 1995. Nuclear localization and transcriptional activation activities of truncated versions of the immediate-early gene product of equine herpesvirus 1. J Virol 69 : 3857 - 3862
  13. Holden VR, Zhao Y, Thompson Y, et al. 1995. Characterization of the regulatory function of the ICP22 protein of equine herpesvirus type 1. Virology 210: 273-282 https://doi.org/10.1006/viro.1995.1344
  14. Kim SK, Holden VR, O'Callaghan DJ. 1997. The ICP22 protein of equine herpesvirus 1 cooperates with the IE protein to regulate viral gene expression. J Virol 71 : 1004-1012
  15. Smith RH. Zhao Y, O'Callaghan DJ. 1993. The equine herpesvirus 1(EHY- 1) UL3 gene, an ICP27 homolog, is necessary for full activation of gene expression directed by an EHY- 1 late promoter. J Virol 67 : 1105-1109
  16. Zhao Y, Holden VR, Smith RH, et al. 1995. Regulatory function of the equine herpesvirus 1 ICP27 gene product. J Virol 69 : 2786-2793
  17. Smith RH, Zhao Y, O'Callaghan DJ. 1994. The equine herpesvirus type 1 immediate-early gene product contains an acidic transcriptional activation domain. Virology 202 : 760-770
  18. Kim SK, Smith RH, O'Callaghan DJ. 1995. Characterization of DNA bind- ing properties of the immediate-early gene product of equine herpesvirus type 1. Virology 213 : 46-56
  19. Kim SK, Bowles DE, O'Callaghan DJ. 1999. The $\gamma2$ late glycoprotein K promoter of equine herpesvirus 1 is differentially regulated by the IE and EICP0 proteins. Virology 256 : 173-179
  20. Harty RN, O'Callaghan DJ. 1991. An early gene maps within and is 3' coterminal with the immediate-early gene of equine herpesvirus 1. J Virol 65 : 3829-3838
  21. Hampsey M. 1998. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62 : 456-503
  22. Lagrange T, Kapanidis AN, Tang H, et al. 1998. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12 : 34-44
  23. Bangur CS, Faitar SL, Foister JP, et al. 1999. An interaction between the N-terminal region and the core domain of yeast TFIIB promotes the formation of TATA-binding protein-TFIIB-DNA complexes. J Biol Chem 274: 23203-23209 https://doi.org/10.1074/jbc.274.33.23203
  24. Bushnell DA, Bamdad C, Kornberg RD. 1996. A minimal set of RNA polymerase II transcription protein interactions. J Biol Chem 271 : 20170-20174
  25. Hawkes NA, Roberts SG. 1999. The role of human TFIIB in transcription start site selection in vitro and in vivo. J Biol Chem 274 : 14337-14343
  26. Kim YJ, Bjorklund S, Li Y, et al. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77 : 599-608
  27. Koleske AJ, Young RA. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368 : 466-469
  28. Ossipow VJ, Tassan P, Nigg EA, et al. 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83 : 137 - 146
  29. Pardee TS, Bangur CS, Ponticelli AS. 1998. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J Biol Chem 273 : 17859-17864
  30. Pinto I, Wu WH, Na JG, et al. 1994. Characterization of sua7 mutations defines a domain of TFIIB involved in transcription start site selection in yeast. J Biol Chem 269 : 30569-30573
  31. Ranish JA, Yudkovsky N, Hahn S. 1999. Intermediates in formation and activity of the RNA polymerase II preinitiation complex : holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 13 : 49-63
  32. Thompson CM, Koleske AJ, Shao DM, et al. 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73 : 1361 -1375
  33. Gonzalez-Couto E, Klages N, Strubin M. 1997. Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc Natl Acad Sci USA 94: 8036-8041 https://doi.org/10.1073/pnas.94.15.8036
  34. Agostini I, Navarro JM , Rey F, et al. 1996. The human immunodeficiency virus type 1 Vpr transactivator : cooperation with promoter-bound activator domains and binding to TFIIB. J Mol Biol 261 : 599-606
  35. Benson JD, Lawande R, Howley PM. 1997. Conserved interaction of the papillomavirus E2 transcriptional activator proteins with human and yeast TFIIB proteins. J Virol 71 : 8041-8047
  36. Haviv I, Doitsh MG, Shaul Y. 1998. Hepatitis B virus pX targets TFIIB in transcription coactivation. Mol Cell Biol 18 : 1562-1569
  37. Rank NM, Lambert PF. 1995. Bovine papillomavirus type 1 E2 transcriptional regulators directly bind two cellular transcription factors, TFIID and TFIIB. J Virol 69 : 6323-6334
  38. Tong X, Wang F, Thut CJ, et al. 1995. The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69: 585-588
  39. Veschambre P, Roisin A, Jalinot P. 1997. Biochemical and functional interaction of the human immunodeficiency virus type 1 Tat transactivator with the general transcription factor TFIIB. J Gen Virol 78 : 2235-2245
  40. Yao J, Breiding DE, Androphy EJ. 1998. Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB. J Virol 72 : 1013-1019
  41. Jang HK, Albrecht RA, Buczynski KA, et al. 2001. Mapping the sequences that mediate interaction of the equine herpes-virus 1 immediate-early protein and human TFIIB. J Virol 75 : 10219-10230
  42. Paterson T, Everett RD. 1990. A prominent serine-rich region in Vmw 175, the major transcriptional regulator protein of herpes simplex virus type 1, is not essential for virus growth in tissue culture. J Gen Virol 71 : 1775- 1783
  43. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  44. Ha I, Lane WS, Reinberg D, et al. 1991. Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 352 : 689-695
  45. Derbigny WA, Kim SK, Caughman GB, et al. 2000. The EICP22 protein of equine herpesvirus 1 physically interacts with the immediate-early protein and with itself to form dimers and higher-order complexes. J Virol 74 : 1425-1435
  46. Choy B, Green MR 1993. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366 : 531-536
  47. Goodrich JA, Hoey T, Thut CJ, et al. 1993. Drosophilia $TAF_{\eta}40$ interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75 : 519-530
  48. Kobayashi N, Boyer TG, Berk AJ. 1995. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol Cell Biol 15 : 6465-6473
  49. Kobayashi N, Horn PJ, Sullivan SM, et al. 1998. DA-complex assembly activity required for VP16C transcriptional activation. Mol Cell Biol 18: 4023-4031 https://doi.org/10.1128/MCB.18.7.4023
  50. Lin YS, Green MR. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64 : 971 -981
  51. Uesugi M, Nyanguile O, Lu H, et al. 1997. Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277 : 1310-1313
  52. Carrozza MJ, DeLuca NA. 1996. Interaction of the viral activator protein ICP4 with TFIID through TAF250. Mol Cell Biol 16 : 3085-3093
  53. Grondin B, DeLuca NA. 2000. Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J Virol 74: 11504 -11510
  54. Smith CA, Bates P, Rivera-Gonzalenz R, et al. 1993. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB. J Virol 67: 4676-4687
  55. Manet E, Allera C, Gruffat H, et al. 1993. The acidic activation domain of the Epstein-Barr virus transcription factor R interacts in vitro with both TBP and TFIIB and is cell-specifically potentiated by a proline-rich region. Gene Exp 3 : 49-59
  56. Bagby S., Sungjoon K, Maldonado E, et al. 1995. Solution structure of the C-terminal core domain of human TFIIB: Similarity to cyclin A and interaction with TATA-binding protein. Cell 82 : 857-867
  57. Kim SK, Buczynski KA, Caughman GB, et al. 2001. The equine herpesvirus 1 immediate-early protein interacts with EAP, a nucleolar-ribosomal protein. Virology 279 : 173-184