The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading

항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석

  • Published : 2002.12.01

Abstract

The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

본 논문은 8절점 고체요소를 이용하여 항공기 충돌에 의한 원전 격납건물의 동적 거동을 분석하고 그 결과를 기술하였다. 콘크리트의 재료적 특성을 표현하기 위하여 Drucker-Prager항복기준을 바탕으로 항복면과 파괴면을 형성하였다. 이때 항복면과 파괴면은 콘크리트의 소성변형이 누적되면 가변하는 것으로 가정하였다. 철근의 재료특성은 변형도에 의존적인 탄성/점소성모델을 이용하여 표현하였다. 표준고체요소의 성능저하를 방지하기 위하여 Hughes가 제시한 B bar법을 바탕으로 변형도-변위관계 행렬을 형성하였다. 동적 시간이력해석을 수행하기 위하여 안정적인 수렴성을 가지는 암시적인 Newmark법을 도입하였다. 마지막으로 시간이력해석을 통하여 콘크리트 균열변형도의 수준과 충돌하는 항공기의 종류에 따른 격납건물의 동적거동변화를 조사하고 이를 정량적으로 기술하였다.

Keywords

References

  1. Riera, J. D., 'On the stress analysis of structures subjected to aircraft impact forces,' Nuclear Engineering & Design, Vol. 8, 1968, pp.415-426 https://doi.org/10.1016/0029-5493(68)90039-3
  2. Rebora, B., Zimmerman Th. and Wolf J. P., 'Dynamic rupture analysis of reinforced concrete shells,'Nuclear Engineering & Design, Vol. 37, 1976, pp.269-297 https://doi.org/10.1016/0029-5493(76)90021-2
  3. Cervera, M., Hinton, E. and Bicanic, N., 'Dynamic rupture analysis of reinforced concrete structures subjected to impulsive loading,' in Computational plasticity edited by D.R.J. Owen, E. Hinton and Onate, Pineridge Press, Swansea, UK, 1987
  4. Abbas, H., Paul, D. K., Godbole, N. and Nayak, G. C., 'Aircraft crash upon outer containment of nuclear power plant,'Nuclear Engineering & Design, Vol. 160, 1996, pp. 13-50 https://doi.org/10.1016/0029-5493(95)01049-1
  5. Crutzen, Y. and Reyneu, J., 'Disintegration of shell structures under violent dynamic loading condition,'7th SMIRT, Paper J7/1. 1983
  6. Liu, G. Q. and Owen, D. R. J., 'The dynamic nonlinear analysis of reinforced concrete plates and shells,' in Numerical methods for transient and coupled problems edited by R. W. Lewis, E. Hinton, P. Bettess and B. A. Schrefler, Pineridge Press, Swansea, UK, 1984
  7. Lee, S. J. and Han, S. E., 'Free vibration analysis of plates and shells with a ninenode assumed natural degenerated shell element,'Journal of Sound Vibration, Vol. 241, 2001, pp.605-633 https://doi.org/10.1006/jsvi.2000.3313
  8. Hughes, T. J. R., The finite element method-Linear static and dynamic finite element analysis, Prentice Hall, New Jersey, 1987
  9. Hinton, E., Rock, T. A. and Zienkiewicz, O. C., 'A note on mass lumping and related processes in finite element method,' Int. J. Earthquake Eng. Struc. Dyn., Vol. 4, 1976, pp.245-249 https://doi.org/10.1002/eqe.4290040305
  10. Hill, R., The mathematical theory of plasticity, Oxford University Press, Oxford, 1950
  11. Bicanic, N and Zienkiewicz O. C., 'Constitutive model for concrete under dynamic loading,' Earthquake Eng. Struct. Dyn. Vol. 11, 1973 pp.639-710
  12. Kupfer, H., Hilsdirf, K. H. and Rush, H., 'Behaviour of concrete under biaxial stresses,' ACI Journal, Vol. 66, 1969, pp. 656-666
  13. Hatano, T. and Tsutsumi, H., 'Dynamic compressive deformation and failure of concrete under earthquake load,' Proc. 2nd WCEE, Tokyo, Vol. 3. 1960, pp.1963-1978
  14. Hatano, T., 'Relations between strength of failure, strain ability, elastic modulus and failure time of concrete,' Central Research Institute of Electric Power Industry, C-6001, Tokyo. 1960
  15. Albertini, N. and Montagnani, M., 'Testing techniques based on the split Hopkinson bars,' Proc. Conf. Mech. Properties of Material at high rates of strain, Oxford. 1974
  16. 이상진, 서정문, '철근콘크리트 구조물의 비탄성해석을 위한 구절점 퇴화 쉘요소,”'한국전산구조공학회 논문집, 제14권, 제4호, 2002, pp. 481-494
  17. Zienkiewicz, O. C. and Taylor, R. L., The finite element method, 4th edn., McGraw Hill, London, 1989
  18. 이상진, 이홍표, 서정문, '격납건물 FE모델의 정점개구부 유무에 따른 동적 특성분석,' 대한토목학회 추계학술발표회, 2000, pp.320-324
  19. Bangash, M. Y. H., Concrete and concrete structures: Numerical Modelling and applications, Elsevier Applied Science, London and New York, 1989
  20. Lee, S. J., Lee, Y. J. and Y. S. Choun, 'On the evaluation of free vibration characteristics of containment building with a lower order solid finite element,'한국원자력학회 추계학술발표회 CD 논문집, 2002