동적 가우시안 함수를 이용한 Kohonen 네트워크 수렴속도 개선

Improved Rate of Convergence in Kohonen Network using Dynamic Gaussian Function

  • 길민욱 (문경대학 인터넷정보계열) ;
  • 이극 (한남대학교 컴퓨터전자통신공학부)
  • 발행 : 2002.12.01

초록

자기조직화 지도(self-organizing feature map)는 학습시 수렴하기 위하여 많은 입력패턴을 필요로 하는 단점이 있다. 본 논문에서는 자기조직화 지도 학습시 학습률이 일정한 이웃 상호작용 집합을 동적 가우시안 함수로 변환하여 수렴속도와 수렴도를 개선할 수 있는 방법을 제안한다. 제안한 방법은 이웃 상호작용 함수로 사용된 가우시안 함수의 편차와 폭을 학습 회수에 따라 감소하는 동적 성질과 승자 뉴런으로부터의 위상학적 위치에 따라 각기 다른 학습률을 갖도록 하였다. 따라서 본 논문에서는 자기조직화 지도의 수렴속도와 수렴도를 향상시켰다.

The self-organizing feature map of Kohonen has disadvantage that needs too much input patterns in order to converge into the equilibrium state when it trains. In this paper we proposed the method of improving the convergence speed and rate of self-organizing feature map converting the interaction set into Dynamic Gaussian function. The proposed method Provides us with dynamic Properties that the deviation and width of Gaussian function used as an interaction function are narrowed in proportion to learning times and learning rates that varies according to topological position from the winner neuron. In this Paper. we proposed the method of improving the convergence rate and the degree of self-organizing feature map.

키워드