Stable Degradation of Benzoate by Klebsiella oxytoca C302 Immobilized in Alginate and Polyurethane

  • Kim, Jun-Ho (Department of Microbiology and Biotechnology, and Biotechnology Research Institute, Chungbuk National University) ;
  • Jeong, Won-Hwa (R&D Center, Boryung Pharmaceutical Co.) ;
  • T.B. Karegoudar (Department of Biochemistry, Gulbarga University) ;
  • Kim, Chi-Kyung (Department of Microbiology and Biotechnology, and Biotechnology Research Institute, Chungbuk National University)
  • Published : 2002.12.01

Abstract

Benzoate produced from the degradative pathways of various aromatic chemicals is generally recognized as a pollutant compound. However, various bacterial strains isolated as benzoate degraders have exhibited certain limits to their functions, including a loss of viability and degradability when cultivated in a broth medium for a longer time. Accordingly, immobilization techniques have been utilized to overcome such problems, and the current study examined the use of alginate and polyurethane for immobilizing Klebsiella oxytoca C302 to extend its viability and degradability of benzoate. The organism was well encapsulated by both matrices and the immobilized cells showed a high stability as regards their viability and degradability of 2 mM benzoate in a MM2 broth medium during cultivation for longer than 60 h in a semicontinuous batch system.

Keywords

References

  1. Adv. Microbial Physiol. v.31 The TOL plasmids: Determinants of the catabolism of toluene and the xylenes. Assinder, S. J.;P. A. Williams https://doi.org/10.1016/S0065-2911(08)60119-8
  2. Biodegradation v.5 Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Furukawa, K.
  3. Appl. Environ. Microbiol. v.61 Degradation of 4,4-dichlorobiphenyl, 3,3,4,4-tetrachlorobiphenyl, and 2,2,4,4,5,5- hexatetra-chlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Dietrich, D.;W. J. Hichey;R. Lamar
  4. Biodegradation v.5 Genetic construction of PCB degraders. Brenner, V.;J. J. Arensdorf;D. D. Focht https://doi.org/10.1007/BF00696470
  5. Appl. Microbiol Biotechnol. v.30 Catabolism of biphenyl by Pseudomonas sp. NCIB 10643 and Nacardia sp.NCIB 10503. Smith, M. R.;C. Ratledge https://doi.org/10.1007/BF00296630
  6. Kor. J. Appl. Microbiol. Biotechnol. v.22 Cloning of pcb genes in Pseudomonas sp. P20 specifying degradation of 4-chlorobiphenyl. Nam, J. H.;C. K. Kim
  7. Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds. van Agteren, M. H.;S. Keuning;D. B. Janssen
  8. Kor. J. Microbiol. v.36 Isolation and identification of Klebsiella oxytoca C302 and its degradation of aromatic hydrocarbons. Kim, K. P.;J. S. Lee;S. I. Park;M. S. Rhee;K. S. Bae;C. K. Kim
  9. J. Bacteriol. v.183 Reinvestigation of a new type of aerobic benzoate metabolism in the proteobacterium Azoarcus evansii. Mohamed M. E.;A. Zaar;C. Ebenau-Jehle;G. Fuchs https://doi.org/10.1128/JB.183.6.1899-1908.2001
  10. J. Microbiol. Biotechnol. v.8 Hydrolytic dechlorination of 4-chlorobenzoate specified by fcbABC of Pseudomonas sp. DJ-12. Chae, J. C.;K. J. Ahn;C. K. Kim
  11. J. Microbiol. Biotechnol. v.8 A pathway for 4-chlorobenzoate degradation by Pseudomonas sp. S-47. Seo, D. I.;J. C. Chae;K. P. Kim;Y, Kim;K. S. Lee;C. K. Kim
  12. J. Ind. Microbiol. v.16 Environmental applications of immobilized microbial cells: a review Cassidy, M. B.;H. Lee;J. T. Trevors https://doi.org/10.1007/BF01570068
  13. Enzyme Microb. Technol. v.25 Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Mordocco, A.;C. Kuek;R. Jenkins https://doi.org/10.1016/S0141-0229(99)00078-2
  14. Biotechnol. Bioeng. v.31 Dehalogenation of 3-chlorobenzoate by immobilized Pseudomonas sp. B13 cells. Sahasrabudhe, S. R.;A. J. Modi;V. V. Modi https://doi.org/10.1002/bit.260310818
  15. J. Microbiol. Biotechnol. v.9 Production of salicylic acid from naphthalene by immobilized Pseudomonas sp. strain NGK1. Manohar, S.;C. K. Kim;T. B. Karegoudar
  16. Enzyme Microb. Technol. v.23 Degradation of polychlorinated biphenyl by cells of Rhodococcus opacus strain TSP203 immobilized in alginate and in solution. Mukerjee-Dhar, G.;M. Shiura;K. Kimbara https://doi.org/10.1016/S0141-0229(98)00008-8
  17. Appl. Microbiol. Biotechnol. v.55 Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Manohar, S.;C. K. Kim;T. B. Karegoudar https://doi.org/10.1007/s002530000488
  18. Appl. Environ. Microbiol. v.61 A meta-cleavage pathway for 4-chlorobenzoate an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Arensdorf, J. J.;D. D. Focht
  19. J. Microbiol. Biotechnol. v.11 Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. Koo, S. M.;Y. H. Cho;C. S. Huh;Y. J. Baek;J. Y. Park
  20. Enzyme Microb. Technol. v.24 Biotransformation of aromatic compounds by immobilized bacterial strains in barium alginate beads. Quintana, M. G.;H. Dalton https://doi.org/10.1016/S0141-0229(98)00116-1