이온고환 수지를 이용한 Xylose로부터 젖산의 추출발효

Lactic Acid Production from Xylose by Extractive Fermentation using ion-Exchange Resin

  • 김기복 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과) ;
  • 권윤중 (경기대학교 식품생물공학과)
  • 발행 : 2002.12.01

초록

Lactococcus lactis IO-1를 이용하여 xylose로부터 젖산발효를 수행한 결과 기질농도가 50 g/L에서 100 g/L로 증가됨에 따라 생육저해 및 생산성감소가 일어났다. 따라서 이온교환수지(Amberlite IRA-400, 250 g)를 이용하여 젖산을 발효 중에 제거함으로 최종산물저해를 완화시킬 수 있는 추출발효를 수행하였다. 초기 xylose 100 g/L에서 발효조내 젖산농도 20 g/L 에서 추출발효를 시작한 결과 기질을 거의 모두 소비하여 총53.6 g/L의 젖산을 생산하였으며 1.6 g/L·h의 생산성을 나타냈다. 이는 일반적인 회분발효에 비해 약 1.8배 향상된 결과로써 향후 수지에 젖간의 흡착을 저해하는 문제점을 개선함으로써 이온교환수지의 젖산 흡착량을 늘릴 수 있는 방안을 모색한다면 지금 보다 더 나은 생산성을 나타낼 것으로 사료된다.

In lactic acid fermentation, the end product inhibition by lactic acid causes several problems. The most important of which are low lactate formation rate and its recovery from fermentation broth. To overcome these problems, extractive lactic acid fermentation was carried out in a bioreactor, which was connected to a column packed with anion exchange resin (Amberlite IRA-400, 250 g). The system was started as a batch process, and then the separation process was started when the lactic acid concentration reached 10 g/L, 20 g/L or 30 g/L. In each case, total lactic acid concentration was reached to 48.6, 53.6, 52.6 g/L with its productivity of 1.2 g/L $.$ h, 1.6 g/L $.$ h, and 1.3 g/L $.$ h, respectively Especially, in the case of the 20 g/L recycling-initiation process, extractive fermentation reduced tie fermentation time (17 hrs) by 34% in comparison with the conventional batch process. The direct consequence of this time reduction was shown by a 1.8 fold increase in overall lactic acid productivity.

키워드

참고문헌

  1. Chem. Eng. Prog. v.82 Is lactic acid a commodity chemical? Lipinsky,E.S.;R.G.Sinclair
  2. FEMS Microbiol. Rev. v.16 Technological and economic potential of poly(lactic acid) and lactic acid derivaties Rathin,A.;S.T.Tsai;P.Bonsingore;S.H.Moon;J.R.Frank https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
  3. Extractive Bioconversions Mattiasson,B.;O.Holst
  4. Enz. Microbiol. Technol. v.8 Lactic acid from acid whey permeate in a membrane recycle bioreactor Mehaia,M.A.;M.Cheryan https://doi.org/10.1016/0141-0229(86)90023-2
  5. Biotechnol. Bioeng. v.37 High-concentration cultivation of Lactococcus cremoris in a cell-recycle reactor Bibal,B.;Y.Vayssier;G.Goma;A.Pareilleux https://doi.org/10.1002/bit.260370809
  6. Biotechnol. Lett. v.19 By-product formation in cell-recycled continuous culture of Lactobacillus casei Yoo,I.K.;H.N.Chang;E.G.Lee;Y.K.Chang;S.H.Moon https://doi.org/10.1023/A:1018353507067
  7. Bioprocess Eng. v.6 Extractive bioconversion for lactic acid production using solid sorbent and organic solvent Seevaratnam,S.;O.Holst;S.Hjorleifsdottir;B.Mattiasson https://doi.org/10.1007/BF00369276
  8. Biotechnol. Bioeng. v.37 Extractive fermentation for lactic acid production Yabannavar,V.M.;D.I.C.Wang https://doi.org/10.1002/bit.260371115
  9. Sep. Sci. Technol. v.31 Reactive extraction of lactic acid with trioctylamine(TOA)/methylene chloeide(MC)/n-hexane Han,D.H.;W.H.Hong https://doi.org/10.1080/01496399608001338
  10. Ph.D. Dissertation, Graz University Extractive Lactic Acid Fermentation Katzabauer,B.
  11. Biotechnol.Bioeng. v.50 Extractive lactic acid fermentation in poly(ethyleneimine)-based aqueous two-phase system Kwon,Y.J.;R.Kaul;B.Mattiasson https://doi.org/10.1002/(SICI)1097-0290(19960505)50:3<280::AID-BIT7>3.0.CO;2-C
  12. Kor. J. Appl. Microbiol. Biotechnol. v.26 Partitioning of Lactobacillus helveticus cells and lactic acid in aqueous PEI/HEC two-phase system An,H.K.;Y.J.Kwon
  13. Biotechnol. Bioeng. v.39 Extractive lactic acid fermentation using ion-exchange resin Srivastava,A.;P.K.Roychoudhury;V.Sahai https://doi.org/10.1002/bit.260390604
  14. Biotechnol. Bioeng. v.47 Kinetics and mass transfer for lactic acid recovered with anion exchange method in fermetation solution Zihao,W.;Z.Kefeng https://doi.org/10.1002/bit.260470102
  15. Appl. Biochem. Biotechnol. v.57-58 Continuous and Simultaneous fermentation and recovery of lactic acid in a biparicle fluidized-bed bioreactor Kaufman,E.N.;S.P.Cooper;M.K.Budner;G.R.Richardson https://doi.org/10.1007/BF02941730
  16. Kor. J. Biotechnol. Bioeng. v.14 Simultaneous saccharification and extractive fermentation for lactic acid production Kong,C.B.;C.H.Woo;S.H.Choi;H.H.Yoon
  17. Proc.Biochem. v.31 Lactic acid from wood Parajo,J.C.;J.L.Alonso;V.Santos https://doi.org/10.1016/0032-9592(95)00059-3
  18. Appl. Biochem. Biotechnol. v.63-65 Membrane-mediated extractive fementation for lactic acid production from cellulosic biomass Chen,R.;Y.Y.Lee https://doi.org/10.1007/BF02920444
  19. Biotechnol. Lett. v.21 Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid Iyer,P.V.;Y.Y.Lee https://doi.org/10.1023/A:1005435120978
  20. Biotechnol. Lett. v.12 The fermentative characteristics of Lactobacillus xylosus on glucose and xylose Tyree,R.W.;E.C.Clausen;j.L.Gaddy https://doi.org/10.1007/BF01028492
  21. J. Ferment. Bioeng. v.80 Growth kinetics and productio inhibition of Lactococcus lactis IO-1 culture in xylose medium Ishizaki,A.;T.Ueda https://doi.org/10.1016/0922-338X(95)90832-K
  22. Biotechnol. Lett. v.19 Glucose repression of xylose utilisation by Lactococcus lactis IO-1 Kanagachandran,K.;P.F.Stanbury;S.J.Hall;A.Ishizaki https://doi.org/10.1023/A:1018310325607
  23. Anal. chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller,G.A. https://doi.org/10.1021/ac60147a030