Changes in the levels of Water Soluble protein and flee Amino Acids in Brown Rice Germinated in a Chitosan/Glutamic Acid Solution

키토산과 글루탐산의 병용처리에 따른 발아현미 중의 수용성 단백질 및 유리 아미노산 함량변화

  • Published : 2002.12.01

Abstract

The changes in the levels of total soluble protein and some free amino acids were investigated in germinating brown rice. Nongerminated (N) brown rice was germinated for 72 hrs by applying following solutions: 1) distilled water (W), 2) 50 ppm chitosan in 5 mM lactic acid (CL), and 4) 50 ppm chitosan in 5 mM glutamic acid (CG). The level of total soluble protein was higher in the N extract than those of W, CL and CG. Alanine levels were enhanced and aspartic acid levels were decreased significantly in the germinated brown rice, highest increases of alanine were found in the CG germinated brown rice. The levels of serine, decreased during germination in solutions W and CL, were increased significantly by germination in CG solution. The levels of essential amino acids, such as Iysine, isoleucine and methionine were also increased significantly by germination in CG solution. Our results show that the germination of brown rice with CG solution can significantly increase the levels of alanine and some other essential amino acids and can restore the serine level.

발아현미를 생산하기 위하여 현미를 물에 침지, 키토산을 젖산에 용해하여 침지, 키토산을 글루탐산에 용해하여 침지 하였으며, 발아시키지 않은 현미와 아미노산 및 총 단백질 함량을 비교 분석하였다. 키토산을 50 ppm 되게 5 mM glutamic acid에 용해하여 침지액으로 사용한 경우 가장 높은 alanine, serine, lysine, isoleucine, methionine 함량의 증진과 총 유리아미노산 함량의 증진을 보였다. 또한 total soluble protein의 함량은 발아하지 않은 현미에 비하여 발아한 현미가 모두 낮았다. 특히 CG구는 물발아나 CL 발아시 현저히 감소되던 serine의 함량을 오히려 증진시겼다. 모든 발아구에서 aspartic acid 함량은 현저히 감소하였다. 이는 발아 과정에 의해 aspartic acid가 alanine, lysine, isoleucine, methionine 등으로 전환된 것에 기인된 것이라 여겨진다. 이상의 결과를 종합하면 현미발아시 키토산을 글루탐산에 용해하여 침지액으로 사용하면 유용한 아미노산인 alanine, serine 및 필수아미노산인 lysine, isoleucine, methionine 함량을 현저히 증진시킬 수 있어 영양성이 보강된 발아현미를 얻을 수 있을 것으로 기대된다.

Keywords

References

  1. Shokuhin and Kaihatsu v.31 Accumulation of γ-aminobutyric acid(GABA) in the rice germ Nakagawa,K.;A.Onota
  2. Carbohydrate in Food Functional aspects of cereal cell wall polysaccharides Autio,K.;A.C.Eliasson(ed.)
  3. Miraclulous Diets Brown Rcie Cho,S.H.;S.C.Baek(ed.)
  4. Proc.Korean Society of Rcie Research Conference 1996 New Techniques for the Cultivation of Quality Rice, In Rediscovering Korea Rice and Development Direction Lee,M.H.;J.C.Shin;L.K.Park(ed.);J.C.Shin(ed.)
  5. Kor. J. Biotechnol. Bioeng. v.15 Production of the quality germinated brown rices containing high γ-aminobutyric acid by chitosan application Oh,S.H.;W.G.Choi
  6. J. Cereal Sci. v.5 Change in phytate content and phytase during the germination of some cereals Bartnick,M.;J.Szafranska https://doi.org/10.1016/S0733-5210(87)80005-X
  7. Biochem. J. v.295 Purification and characterization of a phytase (myoinositol-hexakisphosphate phospho-hydrolase) accumulated in maize(Zea mays) seedlings during germination Laboure,A.M.;J.Gangnon;A.M.Lescure https://doi.org/10.1042/bj2950413
  8. Chitin·Chitosan: Basic and Pharmacology What is Chitin·Chitosan? Kim,S.K.;H.Y.Lee(ed.)
  9. Kor. J. Appl. Microbial. Biotechnol. v.24 Effect of chitosan on the growth of Botryosphaeria dothidea, the casual fungus of apple white rot Lee,S.J.;J.Y.Uhm;Y.H.Lee
  10. Agri.Biol.Chem. v.54 Chitinase activity in seeds coated with chitosan derivatives Hirano,S.;T.Yamamoto;M.Hayashi;T.Nishida;H.Inui https://doi.org/10.1271/bbb1961.54.2719
  11. Biochem. Biophys. Res. Commun. v.143 Chitin oligosaccharides as elicitors of chitinase activity in melon plants Roby,D.;A.Gadelle;A.Toppan https://doi.org/10.1016/0006-291X(87)90332-9
  12. Korean J. Food Sci. Technol. v.34 Changes of quality characteristics on the bread added chitosan Lee,H.Y.;S.M.Kim;J.Y.Kim;S.K.Youn;J.S.Choi;S.M.Park;D.H.Ahn
  13. J. Chitin. Chitosan v.4 Hydrolytic depolymerization of chitosan using organic acids to oligo-chitosaccharides Choi,G.J.;H.S.Kim;S.J.Sim;Y.D.Kim;K.J.Woo;Y.S.Cho
  14. Plant Physiol. v.66 Chitosan as a component of pea-Fusarium solani interactions Hadwiger,L.A.;J.M.Beckman https://doi.org/10.1104/pp.66.2.205
  15. Korean J. Biotechnol. Bioeng. v.17 Changes in the levels of γ-aminobutyric acid and some amino acids by application of a glutamic acid solution for the germination of brown rices Oh,S.H.;S.H.Kim;Y.J.Moon;W.G.Choi
  16. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  17. Plant Physiol. v.49 Anaerobic accumulatin of γ-aminobutyric acid and alanine in radish leaves(Raphanus sativus L.) Streeter,J.G.;J.F.Thompson https://doi.org/10.1104/pp.49.4.572
  18. Plant Physiol. v.75 Riapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation Wallace,W.;J.Secor;L.E.Schrader https://doi.org/10.1104/pp.75.1.170
  19. Plant Biochemistry and Molecular Biology Heldt,H.W.
  20. Principles of Biochemistry(2nd ed.) Lehninger,A.L.;L.N.David;M.C.Michael
  21. Phytochem. v.38 Anaerobic accumulation of 4-aminobutyrate in rice seedlings;causes and significance Aurisano,N.;A.Bertani;R.Reggiani https://doi.org/10.1016/0031-9422(94)00774-N