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a Balanced Loss Function
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Abstract

In decision theoretic estimation, the loss function usually emphasizes precision of
estimation. However, one may have interest in goodness of fit of the overall model as
well as precision of estimation. From this viewpoint, Zellner(1994) proposed the
balanced loss function which takes account of both "goodness of fit” and "precision of
estimation”. This paper considers estimation of the parameter of a Bernoulli
distribution using Zellner's(1994) balanced loss function. It is shown that the sample

mean ?, is admissible. More general results, concerning the admissibility of

estimators of the form aX+ b are also presented. Finally, minimax estimators and
some numerical results are given at the end of paper.

Keywords : Admissibility, Balanced loss function Bayes estimator, Inadmissibility, Minimax

estimator.

1. Introduction

Let X,,, X, be a random sample from a Bernoulli distribution with p.m.f,

Adp)= p* (1—=p 7%, x=01and 0 < p < 1

This paper considers estimation of p under the balanced loss function (BLF),

LBH=2 2 (X~D+-0) 0= D', (11

1=

where Z) is any estimator of p, and @ is a nonstochastic weight such that 0 < w < 1.
This loss function, introduced by Zellner(1994), is formulated to reflect two criteria, namely
goodness of fit and precision of estimation. In the past, loss functions reflect-ing one or the
other of these criteria, but not both, have been employed in decision theoretic estimation. For
example, least squares estimation reflects goodness of fit considerations whereas use of
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quadratic loss functions involves a sole emphasis on precision of estimation. As is well
known, sole emphasis on a precision of estimation criterion, for example mean squared error
can often lead to biased estimators. In some circumstances bias is not important but in others
it is critical. On the other hand, use of a goodness of fit criterion leads to an estimate which
gives good fit and is an unbiased estimator; however it may not be as precise as an
estimator which is somewhat biased. Thus there is a need to provide a framework which
combines goodness of fit and precision of estimation formally. The BLF framework meets this
need. As mentioned above, the first term allows for “goodness of fit” and the second term
"precision of estimation”. For estimation under the BLF, for some standard distributions, see
Zellner(1994), Rodrigues and Zellner(1995), Chung and Kim(1997), Chung, Kim and Song(1998),
Chung, Kim and Dey(1999).

The admissibility of linear estimators of the form aX+ b, for estimating a Bernoulli mean
and in general for estimating the mean of distributions of the one parameter exponential
family under a squared error loss has been studied by Karlin(1958) and Gupta(1966).

In this paper, we consider estimation of p under the loss(1l.1). In section 2, we obtain a
Bayes estimator of p relative to the loss(1.1) and compute the risk and Bayes risk functions
of aX+b. In section 3, the class of inadmissible linear estimators of the form aX+ b is
classified. In section 4, the class of admissible linear estimators of the form aX+b is
obtained and admissibility of X is proved. Finally, in section 5, minimax estimators of 2

under the loss(1.1) are tabulated for different values of #.

2. Bayes Estimators

For later use, in this section, we consider Bayesian estimation of p. The conjugate family
of prior distribution for p is the family of Beta distribution, B(e, 8), with density

M) =REHE p* ™ -p* 0< p < @1

where ¢ > 0 and B8 > 0. Note that the limiting case, @, 8 —0 gives the usual

"noninformative” prior for p, a(p)e< p ' (1—p) ~ .
It is easy to verify that the posterior distribution of p is

Bla+ 2 1 x,n— 20 =) x;+ B).

The posterior risk of an estimator of 5 under the BLF is
ELGAXI=2 3 (X~ P +1-w)Bl (-7 "IX],

where X=( X, -, X,).

Solving the equation
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OELL(h.pIX] _
op ’
we conclude that the Bayes estimator of p under the loss(1.1) is

$B= a)?('*’(l—‘(l))fb

where 7) is the posterior mean. Hence, the Bayes estimator with respect to the Beta
prior(2.1) is
pp =X +t-0)— 000 (2.2)

_ ntowt Bw 5 _
wtatp XTI

a
n+a+p

ntaw+t Bw
Note that o < ntat <1.

The risk of 13 g may be derived directly or deduced from proposition 2.1 below where, for

later use, we also give the risk function and Bayes risk of the linear estimator of aX+b.

Since, the derivations are straightforward it is omitted.

Proposition 2.1. The risk function of the estimator aX+ b, relative to the BLF loss
function(1.1) is
R(p,aX+b) = [(a—Dpt 81+ 21 (a— o)’ + w(n- 0],

= [(a-p2-fam@teln=0) 1

(8- +-lametalnzal g,

and the Bayes risk of aX+ b, relative to the Beta prior is

B N2 _
AraX+8) = [(a—1]?P--(a=2) }“’(" A G
(2—w’+a(n—0) 1_a
+ [2b(a—1)+ ta=e nwn @ ]a+3+b2'

3. Inadmissibility

In this section, the class of inadmissible linear estimators of the form aX+ b, is obtained.
An improved estimator is exhibited in each of the following six disjoint subclasses.

Theorem 3.1. The estimator aX+ b is inadmissible under the loss function(1.1) whenever

one of the following conditions hold:
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i) a>1,

(i) a < o,

(i) w< a<1land a+b>1,
(iv) w < a<1land b <0,
(v) a=1and b + 0,

(vi) a= wand b < 0.

Proof : (i) If a > 1, then (a— w)?>(1— w)? and hence by Proposition (2.1),
R(p,aX+b) = AIT_QL[(a—a))ZWLw(n—w)]
> PA=LL[ (1 - 4)2+ w(n— )]
= R(p, X).
Thus, aX+ b is dominated by X.
() If a < w then (a—1)®(w—1)? and hence

R(p.aX+8) = [(a=Dp+ 012 +2L2 [ (40— 0)2+ o(n— o))

= (a—1)? [p+ afl ]2+ D(li;—p)[(a—w)z-i—w(n—w)]

(0= It =1 + 202D ()t - 0]

> (w—D? [p+ af1]2+ D(ln_p) w(n— w)

_ _ blw—1) 12+ _p(1=1)

= R(p, 0 X+ _bjag):—_ll)_).

w(n— w)

Thus in this case, aX+ b is dominated by co?('+~-ll£a@:_-1ll .

Gi)If @< a<1land a+b> 1, then
(a—1Dp+b> (a—Dp+l—a = (a—1(p—1) > 0,
and hence [(a—1)p+51* > [(a—1)p+1—al?. We have
R(p,aX+8) = [(a—Dp+ 812+ P12 (4— 0)+ w(n— )]
> [(a—1)p+1—a]2+—2L;21[(a—w)2+w(n—w)]
= R(p,aX+1—a).

Thus aX+ b is dominated by aX+1—a, when condition (iii) holds.

(iv) For w < @ <1 and b < 0, the estimator aX+ b is dominated by aX—b. To see
this, note that

R(p,aX+b)—R(p,aX—b) = [(a—1)p+bl12—[(a—1)p—b]% = 4b(a—1p > 0,
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since a<land b <0,
(v) In this case, aX+b= X+bis dominated by 7( since

Rp.X+8) = o'+ 210 (1- o)+ o(n— )]
> =21 (1 0+ w(n— o))

= R(».X).
(vi) For condition (vi), it is easily seen that X+ & is dominated by @X as regarding the
difference functions of wX+ b and wX. It follows that
R(p,0X+b)—R(p,0X) = [(w—Dp+5]°— [(0—1)p]? = t[2(w—1)p+b] > 0,
Hence wX+ b is dominated by wX.

Remark 3.2. Thus we see that in every case we are to look for admissible estimators of
the form aX+ b with (a+ b) lying in the following strip of the a— & plane:
(a,): w<a <L, 0=<0b <C1-a U {1,0).

4. Admissibility

In this section, admissible linear estimators are obtained. They are either proper Bayes
estimators or generalized Bayes estimators relative to an appropriate limiting Beta prior.

Theorem 4.1. The estimator aX+ & is admissible whenever w < a < 1 and
0 b (l—a

Proof : Take w < @ < 1, and consider first 0 £ & < 1— a. Define
ot = nb Cp = n(l—a—b).
a—w a—
The conditions @ < @< land 0 < b < 1—a ensure that ¢"» 0 and B 0.
From (2.2), since

nt ao'wt Bw (l1—w) a" _ b

n+ a'+ B’ * nt o+ B

It follows that aX+b is Bayes estimator of p relative to the prior distribution

B(e®, B*).Also since the loss (1.1) is strictly convex, (2.2) is the unique Bayes estimator
and hence admissible. It follows that @X-+b is admissible when w < a < 1 and
0 <b (1l—a

For the case b=0, consider an estimator aX where a belongs to (w,1). We can show
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that @X is admissible when a is in (w,1). Let us consider the estimator as follows

o (25

It is seen that 5 is the limit of Bayes estimators relative to the Beta prior B(a, 8) as

a — 0. We establish the admissibility of ? by applying a limiting Bayes argument, a
technique due to Blyth{1951).

Consider the improper prior
1

-1 _
(0 = p*  (-pf,
where £ 0. If A is a nondegenerate convex subset of (0,1), it can be shown that there

exists a ky such that fA 7 (p)dp > € for some & ( and all k> k.

The Bayes estimator with respect to 7, can be derived as in (2.2) which is given as

5 = nk+ w+ Pko ~;
k nk+1+ Bk

By proposition (2.1), the risk function of p, is
Rp.5) = [( nk+ o+ Bkw _ 12— ( nk+ w+ ko w)2— w(n—w) 15°

l—w
Xt 1+ gk

nk+1+ Bk nk+1+,6’k
o 20— w) [ nk-l-w—f—ﬁka) —1]+L (nk+a)+£ka) )2_1_&(&—@ b b
nk+l+,8k nk+1+ Bk nk+1+ Bk n
(nk+1+ Bk)*.

The Bayes risk of p, with respect to T, is

1
Aoy = [(2ktetBo 1o (_nk+_w+m )t— (n=0) | M= +2) (B

nk+ 1+ Bk nk+ 1+ Bk n Iw(_}e+3+2)
20— w) [ nktwt Bkw nkt+w+ pfkw 2
vt ke U (nk+1+f’k @)
1 1
" nligrn k185 pdyp

The risk and Bayes risk of 5 are respectively

R 5 = [( n+§a)_1)z— 1( n+tBw w)’— w(nn—a)z 12

n+ B n+p
1, nt+fow 2, wn—w
+ [n( ) )+ " 19,

and
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5 _ L e
Hmp, ) = [("7-:%” D2— (%T‘:_%_w)z_ wo(n=0) Ii
® T Mg+ A+2)

1
n [_1( n+ Bw — W)+ o(n— w) ] I k+1)H’B)
n' nt8 " ML+ 8+1)
The difference of the Bayes risks with respect to 1;; and 13 is

[ (1—w)?f n(1—w)? (1+80*(1—w)?
(n+ B* (n+ B)* (nk+ B+ 1)*

1
(1= w)? LTI n(1 — w)? 4 2001= ) (1+ 8R)
(nk+ Bk+1)° ntipr  (nF B)? (nk+ e+ 1)°

7’(7[k,,5) - 7’(7T/e_1/77e)

(g - TCEFDI® 0 2 ICE+DI)
(nk+ Bk+1)° nLipin " (nk+ B+ 1) nlip

But,
Lim(#(xy, )=z, p)) = 0,
therefore, n—_:_ﬂ ’g) X is admissible for every /£ (0. This proves that aX is admissible for
w < a<l.

Theorem 4.2. Under the BLF (1.1), X is admissible.

Proof : Consider the improper prior m.(p),

1, 1
=% Q-p*

where £ 0. The Bayes estimator, p, with respect to 7, can be derived as in (2.2) which
is given as

~ _  nkti2ew < l—w
P = Tppto Xt Etag

The risk and Bayes risk of p, with respect to 7, are

~ _ a1 -w? | on—w 41— _ J___)__

and



896 N. Sanjari Farsipour and A. Asgharzadeh

1 1
(nk+2)* n (nk+2)? I'(—i+2)

7’(7Tk,5;e) =

Q—ap? TP
(nk+2)? p(%)

+

Also, the risk and Bayes risk of X are respectively

_ N2 _
RLX) = (1-w) -;w(n w) H1—1)

and

1 1

_ N +DI(—;+1)
Are X) = (l—a))z-;w(n—a)) k - k
- +2)

Then

1 1
k(1 =) | 40—a)?, DT DI +D
(nk+2)? (nk+2)? p(.%+2)

Am D~ Ap b = 1=

%u_mzn%+nn%+n
(nk+2)? 1-(%+1)

therefore,

I;iforg(r(ﬂk,—)—()— Ay p) = 0.

Hence, X is admissible by Blyth's(1951) Lemma.

Remark 4.3. The case not covered yet is when a¢=w and b=0. It is seen that wX is
the limit of Bayes estimators (2.2), when ¢ — 0, 8 — o, and it is conjectured that it is
admissible, but we do not have a proof. The problem is that the limiting Bayes argument
does not work in this case.

5. Minimaxity

To determine a minimax estimator, we consider the Bayes estimator (2.2) and find values of

&> 0 and B 0 such that the risk function of this Bayes estimator is constant. By

Proposition(2.1), the risk function of 133 is given by
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2y (=) (a+ 8?2 w(l-w)? on—w) 1,2
R(p. bp) = [ S s Tntarp? o 1» o, 6D
—2a(a+ B (1 —w n(1l— w) w(n— w) Q—w)ca
+
[ (n+a+ B)? + (n+ a+ p)? + n lo+ (n+a+ B)?

Setting the coefficients of p2 and p in (5.1) equal to zero shows that (5.1) is constant if

and only if
n(a+ A1~ o) = n*(1 — 0)’ + o(n— o) nt+ a+ B)°* (5.2)
2na(a+ B) (1— w)?=n*(1— )t w(n—w)(n+a+ B)? '

Now assume that ( <w < 3nw2(:_(‘_5{¢)_4) . Note that 371—2(:3_5{!)—4) S—%. Solving

equations in (5.2) for @ and B gives
_ o no(n—o)+n(1— oV 51— )+ o(n—1)(n—0) _
a=8 2n(1— w)? —20(n— w) cnl@)say).
From our assumption, we have c¢,()> 0, and hence, the estimator
_ nt2cwo <, (1—wclw
0 = n+2c,(w) X+ n+2c,(w)

i1s the unigue minimax estimator of p under the loss (1.1) with 0 ¢ w ¢ Bn_z(:f{t)_ 4) .

The risk function of & is

(-’ X (w
R.9) = 0T 2 e (w)?

In table 1, we calculate the values of ¢,(w) for the different values of # when « = —%—i and %

Table 1: Values of c¢,(w)

w = —§ 0= Ti 0= Tls
n caw) calw) el )
2 4,07 2.00 1.50
3 6.97 3.00 2.16
4 10.00 4.00 2.80
5 13.10 5.00 3.44
10 28.95 10.00 6.62
15 45.00 15.00 9.80
20 61.10 20.00 12.97
%5 77.22 25.00 16.14
30 93.36 30.00 19.31
50 157.95 50.00 31.99
100 319,51 100.00 63.68
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If we want to choose between ¢ and the MLE 7(, which has risk function
R(p, X) = Jl(__,élln— [(1- o)+ o(n—w)],
and is not constant, Figure 1 is helpful. In Figure 1, we compare risk of X and & for
sample sizes n = 4,30,100 when o = %i% respectively. It is seen that, for small value

of m, ¢ is better than X for most of the range of p (unless there is a strong belief that p

is near 0 or 1) and for large (and even moderate) #, X is better than §.

n=4 n=30
i P — 5
N : | s
s 7 ] | ]
! = o
1 4
s/ 3 \ 3
3/ \ S \
</ \ g4 g
g g
! \ ] \
=S =3 B s
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b
S
j

/ \ g / \ g / \

g \ & s 1/ \
s/ s s
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

n=4 n=30 n=100

004

002
S
00 001

——
///

.03 0.05
#\
i

~.
0.

00 002 004 006 008

00

o 0.4 0.8 0.0 0.4 0.8 0.0 04 LX)

Figure 1: comparison of risk of X (curve) and & (straight line) for sample sizes #n = 4, 30,

100 when w = —1,%,% respectively.
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