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Applications on p-values of Chi-Square Distribution

Chong Sun Hongl), Sung Sick Hong?2)

Abstract

In this paper, behaviors and properties of p-values for goodness-of-fit test are

investigated. With some findings on the p~values, we consider some applications to
determine sample size of a survey research using the regression equation based on a
pilot study data. Regression equations are obtained by the well-known least squared
method, and we find that regression lines could be formulated with only two data
points, alternatively. For further studies, this works might be extended to ¢
distributions for testing hypotheses about population mean in order to determine

sample size of a prospective study. Also similar arguments could be explored for F
test statistics.

Keywords : Goodness—of-fit statistics, Least squared method, Pilot study, Sample size, Survey
research.

1. Introduction

For data analysis of contingency tables, goodness-of-fit test statistics such as Pearson
statistic XZ, Likelihood ratio statistic Gz, Freeman-Tukey statistic TZ, Power divergence
statistic J{A) of Cressie and Read (1984), etc., are used frequently (see Bishop, Fienberg, and
Holland (1975), Agresti (1990), and Christensen (1990)). Among many properties, all these
goodness-of-fit test statistics which are followed Chi-square distribution have identical
degrees of freedoms (/—1)(J—1), even though sample sizes of IXJ contingency tables are
not equivalent.

When two dimensional contingency table, for example, is tested for H,: two categorical
variables are independent, one might encounter in practice not to get one’s desired result
which is the rejection of the null hypothesis. At this case, one seldom makes the count of cell
doubled or tripled. Then each cell probabilities in a modified table are invariant, but results of

analysis are easy to convert. Our purpose of this work is not to abuse these disadvantages.
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When one fails to reject the null hypothesis from the obtained contingency table, the
previous survey might be regarded as a ’‘pilot study’ of small sample size and let us suppose
that a prospective survey research is demanded in near future. In order to obtain desired
results, researchers might try to make the sample size of a prospective survey larger than
that of the pilot study data analyzed previously. Under some assumptions and regularity
conditions, cell probabilities of contingency table obtained from a pilot study are close to those
of a prospective contingency table. Whereas goodness-of-fit test statistics for both
contingency tables have different values, these statistics follow Chi-square distribution of the
same degrees of freedom. Therefore, we need to research on p-values that utilize Chi~-square
distribution to decide an appropriate sample size of a prospective survey.

In Section 2, p-values of Chi-square distribution are defined and formulated when degrees
of freedoms are even or odd numbers. And we will investigate properties of p-values of
goodness-of fit test. With some findings of these properties, we may consider some
applications to analyze contingency tables in Section 3. In other words, one make use findings
to determine sample size of a survey research based on results of the pilot study. In Section
4, alternative behavior is developed to determine the sample size with ease. And further

studies are discussed and provided in Section 5.

2. Definition and Calculation of p-values

2.1 Definition of p-value

Suppose a random variable X? follows Chi-square distribution with 7z (n=1,2,3,...)
degrees of freedom, and let us define the p-value of the Chi-square distribution as the

following p(c¢) :

-1 X

HO=Pr(X>=1- [ Fho($) 22 e 2ar, M

where ¢>(. In order to get approximate values of (1), among others, the best known are the

approximation of Fisher (1922) :
p()=1-0(V2c—V2n—1)

and the approximation of Wilson and Hilferty (1931) :
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1
H)=1—0({(c/n) =1+ 2/9n}V In/2).

(See Kotz (1970) pp. 176-182 for more detail.) The exact p-value in (1) is formulated by
some authors (eg, Park and Huh (1983) pp. 153). When the degree of freedom # is an even

number, the p-value is obtained as

5]
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When # is an odd number (z=2m+1, m=1,2,...),

c -1 _x —C (a=D/2 oi-1 ;. 2i=1)/2
He) = 1-——\/%——”]0 x le *dx+V2re ? g 2 (2(22.1_)!1)? )

2.2 Properties of p(c)

We can define p(k8) as the probability of that the random wvariable of Chi-square
distribution is greater than k6. In other words, the critical point ¢ in (1) is denoted as £&8,
where £>1 and 6>0. For any given n and 6, p(k6) could be a function of k These

relationship between p(k8) and £ is represented at <Figure 1> for #=9 and 6=11.99, which
are from an example of <Table 3>.
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<Figure 1> Relationship between % and p(%k8) <Figure 2> Relationship between % and log p(k6)

Now take the log of p(k6), and data {( &k, logp(k6))} are plotted at <Figure 2>. From
<Figure 2>, we find that the relationship between k& and log[p(28)] is almost linear. With
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this finding, one can estimate a simple regression line by using the least squared method. For

the above example, a linear regression equation is fitted as

log [ p(k6)] = 3.08 — 4.33 k. (4)

This estimated regression line (4) has some linearity information such that R? = 0998

F-statistic value =7894.89  ( p-value =0.0001).
3. Application 1 : Estimation of Sample Size for Survey Research

For a IXJ two-dimensional contingency table in <Table 1> obtained from a pilot study,
suppose that researchers fail to reach the desired result which is to reject H; : the two
categorical variables are independent. Let us assume that a main survey research needs to be
asked in near future. In order to obtain some desired results, researchers are willing to make
sample size of the prospective survey larger than that of the pilot study. Then suppose that
the sample size of the prospective survey research is k ( £=1) times of that of the pilot study
without changing of any other situation of population for the prospective survey, where the
data of the survey research is shown as a contingency table in <Table 2>. Each sample size

of the pilot study and the prospective survey are N and k& N, respectively. And x; and xfjk)

are the corresponding cell values.

<Table 1> Pilot study data <Table 2> Prospective survey research data

=1 | j=2 - | j=J | sum =1 | =2 =+ | j=] | sum
1=1 }xn X2 Xy | X1+ =1 xl(lk) xfzk) xl(,k) xf’f
1=2 | %91 | X2 | Xy [ X2+ i=2 | | %8 x| xgd
i=1 | xn Xp - lxg X+ 1= xl(lk) x}zk) x},k) xl(fi)
sum | X4y | X492 Xy N sum x(ff xi"g x(f} kN

Now assume that the characteristic of the population of a pilot study is invariant with that

of a prospective survey, so that both (i,j)th cell probabilities, 5\,-,-=x,~,- |/ N of a pilot study and

~ (& . . - .
p,-,-( )=xf,-k) / EN of a prospective survey converge to p; in probability. Then we obtain the

following <Theorem>.
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<Theorem>
~ . . . —~ (k) .
If p; of a pilot study converges to p; in probability, and p; = of prospective

. - ~B) A .
survey converges to p; in probability, then pi — bp; converges to 0 in

probability.

[Proof of Theorem]
Since {l 15,\-,-(16)— D> e} C{I ﬁ(k)—pij = 6/2} U { | bi—pil>¢€/2)}, the

-~ ~ (k& . ige —~ (k) N
convergence of both p; and pl-j() to p; in probability means that p; — Dy

converges to 0 in probability.

This <Theorem> says that if both py; and 5;-“0 of a pilot study and a survey research,
respectively, converge to the same p; in probability, then p/,\, of the pilot study are very

—~ (& .
much close to p,,-( ) of survey research, so that we find

5P = Byt 0,(1). (5)

And one might assume that xfjk) in <Table 2> is very much close to the k times x; in

<Table 1>, ie,

For a pilot study, the Pearson Chi-square statistic X? is obtained :

(25— N B3
—~ = 0’ ’
L N pijo ( Say)

Xt =

where  p; = b+ P+j = %+ ¥4;/N°, and where xi+=inj, x+,~—Zx,-,~, pi+ =xit/N,

1>/+\,-O=x+ j/N. And for a prospective survey research, the Pearson Chi-square statistic XA

will be obtained :

) ~0(k)y2
i — kN Dij ) _ pnk )
~00H (=67, say),

kN 171‘1‘

XM= S (x
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~0(%) =~ 0k —~0B _ (B (B
pij

where = Pit b+j = Xy x+j/(kN)2. With the assumption (6), we could suppose

that the Pearson Chi-square statistic X*B o the survey research approximates to the £k

times X? statistic value of the pilot study, That 1s,
X = X"+ 0,(1). (7)

We could say that the assumption (7) is reasonable because the main research will be

surveyed in near future under the same situation of population of the pilot study.
Hence we might find that the p-value, p(8'®), which is the probability of that X? random

variable is greater than 6" is very much similar with p(k8), because the xz distributions of
both the pilot study and the prospective survey have the same degree of freedom

(I—1) x(J—1). Therefore, with the strong assumption (7) one can get
p0™) = plkd) + o,(1) . )

By using the linear relationship between % and log[p(£8)] discussed in Section 2, we can
expect an appropriate value of % corresponding to a significant level a. In other words, a

sufficient sample size of a survey research could be estimated with an appropriate value of 4.

[Example] The following data in <Table 3> is taken from the 1984 General Social
Survey of the National Data Program in the United States as quoted by Norusis (1988)
The variables are income and job satisfaction. Income has levels less than $6,000
(denoted < 6), between $6,000 and $15,000 (6-15), between $15,000 and $25,000 (15-25),
and over $25000 (>25). Job satisfaction has levels very dissatisfied (VD), and little
dissatisfied (LD), moderately satisfied (MD), and very satisfied (VS). We treat VS as
the high end of the job satisfaction scale. <Table 3> contains the estimated expected

frequencies for H, @ independence. Two goodness-of-fit statistics have values of X

=11.99 and G?=12.03, based on df=(4-1)(4-1)=9. Both statistics yield a p-value of 0.21
so that this data does not show strong evidence of association between income and job
satisfaction. This result is not what the researchers want, so that let us assume that
the work analyzed previously is regarded as a pilot study and the next prospective
survey research is necessarily demanded in near future under invariant situation
compared with the pilot study. Then in order to decide sample size of the prospective

survey, let us use the linear relationship between % and log[p(k8)].

<Table 4> shows observed p-values, p(k#), and predicted log p-values, log p(£8)=
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3.08 - 4.33 £, which are obtained from the least squared regression line in (4) when the
values of k are greater than 1 and less than 3. When k =14 ( KN= 1,260), one can find
that the predicted p-value is little greater than a significant level @ (=0.05, for
example). An appropriate sample size of a future survey, AN, could be predicted.
Therefore, if the sample sizes of a prospective survey is selected to be greater than
1,300 (AN = 1,300 ) with some appropriate assumptions, the researchers will collected
data and could obtain some conclusions which they want.

<Table 3> Job satisfaction data

VD LD MD A total

<6 s | auem | @em | watm 206
6-15 qossn | Gib | 0 | s 289
15-2 | 0 | osree | @arn | aoiie) 285
> 2 a1men_ | aoden | wosm | gstem) 7
fotal 62 108 319 12 901

<Table 4> observed p-values p(%k8) and predicted log p-values

k p(k0) P(k6) logp(k0) | log p(k6) | residuals kN
1 0.21395419 0.287086 -1.54199 -1.24797 -0.29402 901
1.1 0.15430696 0.186173 -1.86881 -1.68108 -0.18773 991
1.2 0.10923242 0.120731 -2.21428 -2.11419 -0.10009 1081
1.3 0.07606670 0.078293 ~-2.57614 -2.54730 -0.02885 1171
14 0.05220787 | 0.050772 -2.95252 ~2.98040 0.02788 1261
15 0.03537290 0.032925 -3.34181 -3.41351 0.07170 1352
1.6 0.02369135 0.021352 -3.74265 -3.84662 0.10398 1442

3.0 0.00004021 0.000050 ~10.12150 -9.91014 -0.21136 2073

4. Application I : Estimation of least squared regression line

Once a goodness-of-fit test statistic value of a certain contingency table is obtained, the
values of logp(k8) can be calculated by using the results in Section 3. And one might
predict the regression line from the data {( ., logp(%8))}. Then we compare { logp(k8)} with
{ log p(k0)}). We would like to take a look some values of £ satisfying logp(k6) = log p(k6)
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at some cases of the various degrees of freedom and different values of corresponding
goodness—-of-fit test statistics.
First of all, given the interval of A=[1<k<3], 3%x3, 3x4, and 4x4 contingency tables

are considered. Each corresponding degrees of freedom are 4, 6, and 9, respectively.

4.1 {1<k<3} is given

[1] Case 1 : X?= 473 (=0), df= 4 (=n)
Since the degree of freedom is an even number, one get values of p(kf) using equation
(2) such that

loglp(k)] = —4% 4 10g] t‘b_(_kﬁﬁﬁ

_1 ;
_4.73k + log[ ,Z‘b (4.7?/@[22 ]

= ——= 2% 4 log[l+ 4. 73k]

With the values of {( £, log[p(k8)]) ; 1<k<3}, the predicted least squared regression line

is obtained as
log[ 5(EO)] = by+ bk=0.8535—1.9356 - & .

Values of k satisfying logp(k0) = log p(£6) are found by using iterative estimation method
such as 1.349 or 2.566.

[2] Case 2 : X?= 47512, df= 6
=— =03l : (4.7512k/2)*
log [p(k6)] = — 2 72512k +log[1+-4 7212k L (4 75%21@ 227

log[ H(£6)1=1.1173—1.5464 - & .
The values of £ satisfying logp(k6) = log p(k6) are 1.355 or 2,569, which are equivalent

to those of Case 1.

[3] Case 3 : X%= 11.99, d.f.= 9 (based on <Table 3> of Job satisfaction data)
201

v11.99% ) _ 1.9k i—1 P 2
loglpk0)) =loglL—F= [ e Farr| 2 ¢ BAG=DLALSR L
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log [ 5(%6)]=3.0831—4.33108 - &
The values of % satisfying logp(k6) = log p(k6) are 1.349 or 2.563, which are almost

equivalent to those of Case 1 and 2.

One finds that, for Case 1 to 3 of Section 4.1, rounded values of % satisfying logp(kf) =

log p(k0) are almost identical even though values of goodness-of-fit statistic and degrees of
freedom are different. Now we consider another interval of k=[1< £<5]. The same 3X3,

3x4, and 4X4 contingency tables as those in Section 4.1 are reconsidered.
42 {1<k<5 ) is given

[1] Case 1 : X?= 5127, df= 4

log[p( k)] = — 2220k 1 1og 1 4+ 12Tk

log [ p(k6)]1=1.1308 —2.2428 - k
The values of k satisfying logp(k0) = log p(k6) are 1.684 or 4.073.

[2] Case 2 : X?’= 47512, df= 6

2
log[pk)] = — AT . 1ogpy 1 AT5I2E , (A.T512R12)"

log [ H(kO)]=1.5245—1.7554 - k
The values of k& satisfying logp(k8) = log p(k6) are 1.697 or 4.079, which are almost

equivalent to those of Case 1.

[3] Case 3 : X?= 11.99, d.f.= 9 (based on <Table 3> of Job satisfaction data)
2i—1

Vil.99 i-1 (s 2
log [#(k6)] ~log[1 — = e +F 2= LB B

log [ 5(k6)1=23.9767 —4.7906 - k
The values of k satisfying logp(k8) = log p(k6) are 1.679 or 4.067, which are almost

equivalent to those of Case 1 and 2.

From Case 1 to 3 of Section 4.2, rounded values of k satisfying logp(k6) = log p(k6) are
almost equivalent even though values of goodness-of-fit statistic and degrees of freedom are
different, which is the similar arguments of Section 4.1. From these above results,

surprisingly, we found that, once the interval of £ is determined, the values of % satisfying
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log p(k6) = log p(k@) are equivalent approximately no matter what the degrees of freedom
and value of corresponding goodness-of-fit test statistic are. Therefore, one can select two
rounding-off values of % (say &y, ky), which are free of the values of goodness-of-fit
statistic and degrees of freedom.

Moreover, the regression line might be estimated with the corresponding two points
{Cky, log[p(k O, (ky, log[p(k,6)])} as the following :

log[p (% 8)]—log{p(k,0)]
ky—ky

log[ 2*(k6)] = (k—ky) + loglp(k6)] . 9

For example, we already obtained the regression line (4) by the least squared method such
that log [ p(#6)] = 3.08 — 4.33 & for Job satisfaction data in <Table 3> with many
values of { (%4, log[p(£6)])}. For a given interval { 1<k<3}, one could select two points of

k which are 135 and 257. Then alternative regression line might be estimated as the

following :

log[?(kﬁ)] - M—_IOE_LMM (F—1.35) + log[p(1.356)]

1.35-2.57
_ =2.96+8.05 ()1 a5 _ -
= T13—2.5 (k-L35) — 2.76
— 3.07—4.33 & .

We might say that equation (10) is equivalent to equation (4), so that the regression line
which is useful to determine sample size for survey research could be estimated by using the

simple method of (9) with only two data points.

5. Conclusion and further study

When a random variable X2 follows the Chi-square distribution with #» degrees of
freedom, the p-value of the Chi-square distribution is defined as, for given 6,
p(kO) = Pr(x*> k), k>1 . In this paper, our first finding is that the relationship between #
and log[p(%6)] is almost linear. With this result, we could estimate a regression line by
using the least squared method from data {( &, log[p(k8)]) ; Ek>1)}).

Once the interval of £ is determined, one obtains some data {( £, log[p(£6)]) ; k<some

interval}. We found that two values of k (say k,, k;) satisfying logp(k0)= log p(k6) are all
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the same, no matter what the degrees of freedom and value of corresponding goodness—of-fit
test statistic are. Hence alternative regression equation might be formulated in (9) with only
two data points.

Note that the equation, logp(%6) = log p(%0), is the form of
log[(n-1)th polynomial equation of %] = by+ b, k .

The values of k satisfying equation of the above form can not be obtained by general
algebraic solution methods but are found by using iterative estimation methods.

As one of many applications of the theories, one might think an estimation method of
sample size for survey research, which is discussed in Section 3. Under some regularity
conditions and the linear relationships between % and log[p(%6)], one could predict an
appropriate value of % corresponding to a given significant level. Then a sufficient sample

size for a prospective survey research could be estimated.

For testing Hy: u#= py, which is shown at any undergraduate textbooks, we might consider

that sample sizes of a pilot study and a survey are N and kN, respectively. One knows that

the following random variables

¢ _ Xn— 4 and ¢ — Xav— to
N SwVN . Sl VEN

follow t distributions with N—1 and AN—1 degrees of freedom, respectively. With similar
arguments of Section 2 and 3, assume that the characteristic of the population does not
change at either situations of a pilot study and a prospective survey. Then it is easy to get

the results that both expectations of K’N and Xka are pu and those variance estimates

converge to 0 as each sample size increases. Now one could assume that as we did in
<Theorem>,

Xy— Xw — 0 in prob ,
Sy S 0 in prob
\/—N \/k—N n prob .

One might say that value ( cy) of the above random variable fy_; gets very much similar as
that (cw) of tw_, under assuming invariance in their population. That is,

tv—1 = tw-1 T+ 0,(1), which looks different from equation (7). For given values cy, Cav
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of f test statistics, the corresponding p-values are defined as
plen)=Pr(ty-1> cn)
for a pilot study, and

plew) = Prtmw—1> cav)

for a prospective survey. Since the degrees of freedom of { test statistics corresponding to

p-values, p(cy) and p(cuy), are different, we cannot argue that plcy) = plew) + 0,(1).

Nonetheless, when both sample sizes N and AN get larger, it is trivial to show that
pley) = plew) + 0,(1) by some monte carlo studies, which is similar assumption as

equation (8).

For further studies, this work could be extended to test Hj : #),= gy in order to determine

sample sizes of future researches. And for F test statistics in ANOVA tables, similar

arguments could be explored.
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