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Characterization of Tightness for Fuzzy Random Variables

Sang Yeol JooD), Young Ho Y002, Young Jun Chung?®
Abstract

In this paper, we establish some characterizations of tightness for a sequence of
random elements taking values in the space of upper-semicontinuous fuzzy sets

with compact support in R.
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1. Introduction

The notion of tightness plays an important role both in the theory of weak convergence
and in its applications. The relationships between weak convergence and tightness can be also
found in Billingsley[1].

The concept of a fuzzy random variable was introduced by Puri and Ralescu[ll] as a
natural generalization of a random set in order to represent relationships between the
outcomes of random experiment and inexact data due to the subjectivity. Joo and Kim [6]

introduced a new metric d, on the space F(R) of fuzzy numbers in R so that F(R) is
separable and topologically complete, and Ghil et.al.[3] characterized compact subsets of F(R).
Also, Kim [9] proved that a fuzzy mapping is measurable if and only if it is measurable
when considered as a function into the metric space F(R) endowed the metric d..

In this paper, motivated by the works of Joo and Kim [6] and Kim [9], we establish the
theory of tightness for fuzzy random wvariables. Section 2 is devoted to describe some
preliminary results, and the main results are given in section 3.

2. Preliminary Results

In this section, we describe some basic concepts of fuzzy numbers. Let R denote the real
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line. A fuzzy number is a fuzzy set % : R — [0, 1] with the following properties;
(1) % is normal, i.e. there exists x€R such that z(x)=1,
(2) u is upper semicontinuous,
(3) suppu=cl{xeR; u(x) >0} is compact,

(4) u is a convex fuzzy set, ie, # (Ax+ (1 —A)y) = min (z(x), 2(3))
for x,y € R and A €[0,1].
where ¢/ (A) denote the closure of A.
We denote the family of all fuzzy numbers by F(R). For a fuzzy set u, the a-level set
of u is defined by

{x: w(x)=a} if 0<e<l,
supp u if  a=0.

Loi=|

Then it follows that % is a fuzzy number if and only if L 137# ¢ and L ,u is a closed
bounded interval for each ¢ € [0,1]. From this characterization of fuzzy numbers, a fuzzy
number # is completely determined by the end points of the intervals La17=[uf,, u?,].

Furthermore, by Theorem 1.1 of Goetschel and Voxman [4], we can identify a fuzzy number
# with the parametrized representation {(u},, ui) 0 <a< 1} where u}, and u?, are
considered as functions of @< [0,1].

Now, we define the metric dw on F(R) by

dool 2, D)= goi, W(L,u, L,0) 2.1

where £ is the Hausdorff metric defined as
W(L ,u,L,0)=max (luy — vgl,lu’— v3])
Also, the norm || z|| of fuzzy number z will be defined as
I 2l =d(% 0)= max (lugl, |2
Then it is well-known that F(FR) is complete but nonseparable with respect to the metric
dw. Joo and Kim [6] introduced a metric d; on F(R) which makes it a separable metric

space as follows;

Definition 2.1. Let T be the class of strictly increasing, continuous mapping of [0,1]
onto itself. For u, ve F(R), we define
d(u, v) =inf{e>0 ; there exists a t T such that

SUp g<q<i @) —al < ¢ and doo(&,t"z;)é s},

where t- v denotes the composition of » and ¢
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Then it follows immediately that d, is a metric on F(R) and d,(u,v)<d(wu,v). The
metric d, will be called the Skorokhod metric. Note that a sequence { #,} in F(R)
converges to a limit # in the metric d, if and only if there exists a sequence of functions
{t,} in T such that

1i£l;1° t,(a) =@ uniformly in @ and lir}rolo do (t,(2%,), u)= 0.

If do(u,, #) — 0, then d.(z,, ) — 0. But the converse is not true.
Now we define, for &€ F(R) and 0<6<1, 0<a<B<]1,

w{a,)=nL , u, Lgu (2.2)

1 2 2
= max(u,lg— Uy, Uy —Up),

where L ., # denotes the closed interval [ulag u2a+] with convention uia+ the right-limit of
u' at a. If we define
w ( %,8)=inf max jcic, w(@ i 1, @), (2.3)
where the infimum is taken over all partitions 0= a; ¢ a; € =+ < a, = 1 of [0,1]
satisfying a;—a@;_; > & for all 7, then Lemma 3.2 of Joo and Kim [6] implies that
1;;3 w(u, 8)=0 for each u € F(R). (2.4)

3. Main Results

Throughout this section, we assume that F(R) is considered as the metric spaces endowed
with the the Skorokhod metric d,. Let (2,2, P) be a probability space. A function

X : Q- F(R) is called a fuzzy random variable if it is measurable, i.e.

X '(B)={w in 2:X(w) eB}eX for every B € B,

where B, denotes the Borel o-field of F(R) generated by the metric dj
If we denote X () = {(X4(w),X%())|0 < @<1}, then it is well-known that X is a
fuzzy random variable if and only if for each ¢ € [0,1], X ‘1, and X 3 are random variables

in the usual sense(See Kim [9]).
Since F(R) is separable and topologically complete, we can apply the notion of tightness

for random elements in a complete separable metric to the case of fuzzy random variables.

Definition 3.1. (1) Let X, be a sequence of fuzzy random variables. then {X ,,} is said to

be tight if for every € > (0, there exists a compact subset K of F(R) such
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that
P(X,e K)<{e for all =

We wish to characterize the tightness of fuzzy random variables. To this end, we need the

characterization of compact subsets of F(R).

Theorem 3.1. lLet K be a subset of F(R). Then K is relatively compact in the d,
-topology if and only if

sup{[lzll : ue K} <
and

lim sup{ w' ~ (8) : u= K} = 0.
Proof : See Ghil et. al. [4].

The main result is as follows;

Theorem 3.2 {X,} is tight if and only if
(1) For each 7> 0, there exists a A > ( such that for all =,

P{w: 1X.(0)ll>2}) <2 3.1
(2) For each €>0 and 70, there exists a §(0,1) such that for all #,
PHo: w(X (0),8)=e})<n. (3.2)

Proof. (Necessity) Suppose that X, is tight. For givene >0 and #7>0, there exists a
compact subset K of F(R) such that
P(X,e K) < g for all .
By Theorem 3.1, we have that
K c{u: |lull < A} for large enough 4,
and
Kc{wu: w(u, )< e} for small enough §.
Therefore, (1) and (2) follows.
(Sufficiency). Suppose that (1) and (2) hold. For given 7> (0, we choose A >( so that

PH{ao: I X, ()ll>2}) < —éz for all #.
Then for each k&, we choose &, so that for all =,

P{ w: w(X(w),d8)= _}e} < 7/??1— for all =.
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Let A={wu:|lull<A} and Ak={;¢1 w (u, 8) < —IE} If K is the closure of
AN( QIA x), then K is compact by Theorem 3.1. Since

P(X,eK)< P(X,e A) + g‘.lP(X,,eAk) <

for all n, we conclude that X » 1s tight.

Since F(R) is separable and topologically complete, a single fuzzy random variable X is
tight. By the above theorem, for given €>(0 and #7>0, there exist a A<=(0,1) and
8<(0,1) such that

PHao:ll X(o)ll > 4}) <7,

and

P{w: w(X(w),8)=e}) <.

Thus, if (3.1) and (3.2) are satisfied except for infinitely many #, we may ensure that (3.1)

and (3.2) hold for all % by increasing A and decreasing & if necessary.
Therefore, we have the modified form of Theorem 3.2.

Corollary 3.1. {X .} is tight if and only if
(1) lim lim sup P ({: 1X.(>2}) =0.

(2} For each €0,
lim lim sup P {o: w(X (w),8)=e}) =0.

Now let j(u) = sup, j~(a). Then by Lemma 32 of Joo and Kim [6], Ku) is

well-defined. Since ||zl is controlled by |/max(Jzi|, [#5])|l and j(%), we have alternative

form of corollary 3.1.

Corollary 3.2. The following two conditions can be substituted for (1) in corollary 3.1:
(1) lim limsup P ({w: max (1X%u(@)l, [X*u(@)!) > 4})= 0.

1) lim limsup P ({ @: /(X u0) > A}) = 0.

Proof. Since |[L; X, (o)l <X, (@)l and (X, (@) <[l X, (@), it follows that (1)
implies (1) and (17).
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Assume that (1°), (1°") and (2) of Corollary 3.1 hold. Let) =ag { ¢; - < a,=1 be a
partition of [0,1] satisfying min,;(e;—a;_;) > & such that

w-(a,_,a]l< w(u,&+1 for all i=1,-,7
Then (L, u,L, w<w (8 +1+;(u), and since 8 <1, we have

llell = max (leg |, leg ) < limax (Ll lafDIl + 7 (w' (2, 8) + 1+ j(w))
< lmax (ull,lafDll + 5 (w (2,8 + 1+ (@)

Therefore, (1) of Corollary 3.1 follows from (1°),(1”"),(2) and the inequality
P{w: 1 X ()]l > 22})
< P({o: max (I X (o)1 X%0(0)) > A + P{o: w' (X (0),8) +1+i(X (@) > A8})
< P({w: max (| X ()], 1X5a(a)D) > ) + P{w: w'(X.(@),8 =1}
+ P({w: i (X (@) > 26—-2)]).

References

[1] Billingsley, P. (1999). Convergence of probability measures, Second edition, Wiley,
New York.

[2] Butnariuy, D. (1989). Measurability concepts for fuzzy mappings, Fuzzy Sets and
Systems, Vol. 111, 77-82.

[3] Ghil, BM.,, Joo, S.Y. and Kim, Y.K.(2001). A characterization of compact subsets of
fuzzy number space, Fuzzy Sets and Systems, Vol. 123, 191-195.

[4] Goetschel, R. and Voxman, W.(1986). Elementary fuzzy calcilus, Fuzzy Sets and
Systems, Vol. 18, 31-43.

[5] Jacod, J. and Shirayaev, A.N.(1987). Limit theorems for Stochastic Processes,
Springer-Verlag, New York.

[6] Joo, S.Y. and Kim, Y.K.(2000). The Skorokhod topology on space of fuzzy numbers,
Fuzzy Sets and Systems, Vol. 111, 497-501.

[71 Joo, S.Y. and Kim, Y.K.(2000). Topological properties on the space of fuzzy sets,
J. of Mathematical Analysis and Applications, Vol. 246, 576-590.

[8] Joo, S.Y. and Kim, Y.K.(2001). Kolmogorov’'s strong law of large numbers for fuzzy
random variables, Fuzzy Sets and Systems, Vol. 120, 499-503.

9] Kim, Y.K. (to appear). Measurability for fuzzy valued functions, Fuzzy Sets and Systems.

(10] Klement, EP. Puri, ML. and Ralescu, D.A.(1986). Limit theorems for fuzzy random
variables, Proc. Roy. Soc. London ser. A, Vol. 407, 171-182.

[11] Puri, M.L. and Ralescu, D.A.(1986). Fuzzy random variables, J. of Mathematical
Analysis and Applications, Vol. 114, 402-422.

[ 20023 8¥ A=, 2002 11€¥ A ]



