초록
we propose two methods which separate the variable selection step and the split-point selection step. We call these two algorithms as CHITES method and F&CHITES method. They adapted some of the best characteristics of CART, CHAID, and QUEST. In the first step the variable, which is most significant to predict the target class values, is selected. In the second step, the exhaustive search method is applied to find the splitting point based on the selected variable in the first step. We compared the proposed methods, CART, and QUEST in terms of variable selection bias and power, error rates, and training times. The proposed methods are not only unbiased in the null case, but also powerful for selecting correct variables in non-null cases.