Prediction of the Land-surface Environment Changes in the Anmyeon-do Using Fuzzy Logic Operation

퍼지논리연산을 이용한 안면도 지표환경 변화 예측

  • Published : 2002.12.01

Abstract

It is very important to predict the environmental changes in the land-surface as a way of prevention of sustainable nature. This study investigated the difference between the predicted and actual data of Anmyeon-do from 1981 to 2000 through a fuzzy logic operation using multi-spectral image. According to literature survey, maps, and ground truth data, the types of land-use have changed due primarily to shore reclamation or wild land and grassland fostering before the eighties. After the mid-eighties, however, a number of private residents and commercial stores quickly have spreaded throughout beach resorts and quasi-agricultural and forest areas. Moreover, shore and community regions were severely damaged in the nineties with increased farmland, due to the development of tour places and expansion of city area. The predicted result of the environmental changes in the land-surface using the fuzzy logic operation was almost similar to the state of Anmyeon-do obtained through the satellite image. Particularly, the flat lands near the shore was predicted to change slightly. This area is largely under development, thereby raising concerns on the shore environment. Thus, this method is applicable to conducting research on the change in the land-surface.

지역개발의 결과인 지표환경의 변화를 예측하는 일은 지속 가능한 환경을 보전하기 위한 수단으로서 대단히 중요하다. 본 연구에서는 다중분광영상 자료를 이용한 퍼지논리연산을 통하여 안면도의 최근 20년(1901~2000) 간의 지표경관 변화를 예측하고 실제 변화된 내용과 비교 검토하였다. 안면도에 대한 문헌, 지도 및 현지 답사한 결과에 의하면, 1980년대 이전에 주로 해안간척과 황무지개간, 초지 조성 등으로 토지이용 형태가 변화되어 왔다. 그러나 1980년대 중반 이후부터는 해수욕장 주변과 준농림지역을 중심으로 민박시설과 점포 등이 무질서하게 들어섰으며, l990년대에는 관광지 개발 및 토시지역의 확장으로 농경지는 증가하였으나 해안지역과 취락지역의 산림이 심각하게 훼손되었다. 퍼지논리연산을 이용하여 지표환경 변화를 통합하여 예측한 결과와 2000년 위성영상에서 얻은 안면도의 지표환경은 비교적 정확하게 일치하였다. 안면도 지역에서 대규모 토지피복 변화가 일어날 가능성이 높은 지역들은 해안과 가까운 평지에 위치한 지역으로 예측되었는데 실제로 이 지역은 현재 대규모 개발이 진행 중이어서 연안환경 악화의 우려를 자아내고 있다. 따라서 본 방법은 향후 지표환경 변화 연구를 위한 효과적으로 적용될 수 있을 것으로 기대된다.

Keywords

References

  1. 토지이용 계획을 위한 GIS활용방안 연구 국토개발연구원
  2. 대한원격탐사학회지 v.12 no.2 Fuyo-1 OPS 자료를 이용한 낙동강 하류지역의 환경계측 시고 김천 https://doi.org/10.7780/kjrs.1996.12.2.169
  3. 대한원격탐사학회지 v.13 no.3 훈련 데이터로부터 자동 생성된 퍼지멤버함수와 규칙을 이용한 위성영상 분류 박원규;이흥규
  4. 대한토목학회논문집 v.19 no.3 퍼지집합이론을 이용한 Landsat TM 영상의 감독분류 정확도 향상 양인태;김흥규;신계종
  5. 대한원격탐사학회지 v.12 no.3 Landsat자료를 이용한 도시환경 변화추출에서의 주성분분석과 퍼지집합연산의 응용 이기원;박성미;지광훈
  6. 대한원격탐사학회지 v.11 no.1 원격탐사자료와 GIS를 이용한 라오스 남칸유역분지의 토지이용평가 및 미작적지 분석 조명희 https://doi.org/10.7780/kjrs.1995.11.1.1
  7. Photo. eng. Remote Sensing v.54 no.11 Integration of geological data sets for gold exploration in Nova Scotia Bonham-Carter, G. F.;Agterberg,F.P.;Wright,D.F.
  8. GIS technology in mapping landslide hazard, in geographical information system in assessing natural hazards Carrara,A.;Cardinali,M.;Guzzetti,F.;Reichenbach,P.
  9. Analysis on land cover change and it's impacts on sustainable development based on remote sensing and GIS: A case study in Ansan Chen, Xiuwan
  10. Study on the quantitative evaluation of mineral resource potentiality using remote sensing and spatial geoscience data(Ⅱ);KR-97(T)-1 Chi,K.H.;Seo,J.Y.;Han,J.K.
  11. Geosciences Jounral v.4 no.2 Fuzzy logic fusion of W-Mo exploration data from Seobyeong-ri Choi,S.W.;Moon,W.I.;Choi,S.G.
  12. Photo. eng. and Remote Sensing v.65 no.12 Probabilistic prediction models for landslide hazard mapping Chung,F.C.;Fabbri,A.G.
  13. Validation of spatial probabilistic prediction models for landslide hazard mapping Chung,F.C.;Fabbri,A.G.
  14. Remote Sensing of Environment v.37 A review of assessing the accuracy of classifications of remote sensing data Congalton,R.G.
  15. Photo. Eng. and Remote Sensing v.58 no.9 Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification Foody,G.M.;Campbell,N.A.;Trodd,N.M.;Wood,T.F.
  16. Photo. Eng. and Remote Sensing v.58 no.4 A three-stage classifier for remote sensing of mountain environment Franklin,S.E.;Wilson,B.A.
  17. Photo. Eng. and Remote Sensing v.56 no.1 The use of structural information for improving landcover classification accuracies at the ruralurban fringe Gong,P.;Howarth,P.J.
  18. Remote Sensing of Environment v.13 Landsat digital enhancement for change detection in urban environment Howarth,P.J.;Boasson,E.
  19. Photo. Eng. and Remote Sensing v.56 no.11 Integration topographic data with remote sensing for land-cover classification Janssen,L.L.F.;Jaarsma,M.N.;van der Linden,E.T.M.
  20. Introductory digital image processing Jensen,J.R.
  21. Photo. Eng. and Remote Sensing v.59 no.6 An evaluation of the coast watch change detection protocol in South Carolina Jensen,J.R.;Cowen,D.J.;Althausen,J.D.;Narumalani,S.;Weatherbee,O.
  22. Jour. of the Korean Society of Geo-spatial Information Systems v.3 Theoretical background for data-driven integration of raster-based geological information Lee,K.;Chi,K.H.
  23. Remote Sensing of environment v.17 no.1 Mapping of landforms landsat imagery : an example from Eastern New South Wales, Australia Pain,C.F.
  24. Remote sensing change detection -environmental monitoring methods and applications Ross,S.L.;Christopher,D.E.
  25. Nonrenewable Resources v.7 no.1 Bayesian and multivariate methods applied to favorability quantification in Reconvavo Basin and Ribeira Belt, Brazil Rostirolla,S.P.;Soares,P.C.;Chang,H.K.
  26. Photo. Eng. and Remote Sensing v.61 no.3 Evaluation seasonal variability as an aid to cover-type mapping from landsat thematic mapper data in the Northeast Schriever,J.R.;Congalton,R.G.
  27. I. J. Remote Sensing v.10 Digital change detection techniques using remotely sensed data Singh,A.
  28. IEEE Trans. Geoscience and Remote Sensing v.37 no.3 Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR composites Solaiman,B.;Pierce,L.E.;Ulaby,F.T.
  29. Photo. Eng. and Remote Sensing v.54 no.3 Landsat determined geographic change Stringer,W.J.;Groves,J.E.;Olmsted,C.
  30. Photo. Eng. and Remote Sensing v.54 no.3 An evaluation of simulated thematic mapper data and landsat MSS data for discriminating suburban and regional use and land cover Toll,D.L.
  31. Photo. Eng. and Remote Sensing v.61 no.4 Modified highest confidence first classification Van Deusen,P.C.
  32. Geological survey of Canada v.426 VHMS favorability mapping with GIS-based integration modes, Chisel lake-anderson lake area Wright,D.F.;Bonham-Carter, G. F.
  33. Fuzzy sets, information and control v.8 Zadeh,L.A.
  34. Fuzzy set theory and its applications(Their Edition) Zimmermann,H.J.