DOI QR코드

DOI QR Code

예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining


초록

이 논문에서는 공간적 통계기법에 근거한 예측적 공간 데이터 마이닝 방법을 제안하고, 산불위험지역을 예측하는데 적용하였다. 제안된 방법은 조건부 확률과 우도비를 이용한 방법으로 과거 산불발생지역에 대해 산불과 관련된 공간데이터 집합들 사이의 정량적 관계에 의존적인 예측 모델이다. 두 가지 방법을 이용하여 산불위험지역 예측도를 만들고, 각 모델의 예측력을 평가하기 위해 산불위험율(FHR : Forest Fire Hazard Rate)과 예측률곡선(PRC : Prediction Rate Curve)을 이용하였다. 제안된 두 가지 예측모델의 예측력 비교분석 결과, 우도비 방법이 조건부 확률 방법보다 더 우수한 것으로 나타났다. 이 논문에서 제안된 산불위험지역 예측모델을 이용하여 작성된 산불위험지역 예측도는 산불예방과 산불감시장비 및 인력의 효율적인, 배치 등 산불관리의 효율성을 높이는데 많은 도움을 줄 것으로 기대된다.

In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

키워드

참고문헌

  1. R. H. Guting, An Introduction to Spatial Database Systems, In Very Large Data Bases Jorunal(Publisher : Springer Verlag), October, 1994
  2. S. Shekhar and S. Chawla, Spatial Databases : Issues, Implementation and Trends, 2001
  3. G. Greenman, Turning a map into a cake layer of information, New York Times, Feb., 2000
  4. K. Koperski, J. Adhikary, and J. Han, Spatial Data Mining : Progress and Challenges. In In Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'96), 1996
  5. D. Mark, Geographical Information Science : Critical Issues in an Emerging Cross-Disciplinary Research Domain, NSF Workshop, Feb
  6. J. Neter and L. Wasseman, Applied Linear Statistical Models, 4th ed, Irwin
  7. S. M. Weiss and C. A. Kulikowski, Computer Systems that Learn : Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991
  8. P. Kontkanen, P. Myllym.aki and H. Tirri, Predictive data mining with finite mixtures. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, (KDD'96)
  9. D. M. Skapura, Building Neural Networks, ACM Press, 1996
  10. J. R. Quinlan, Induction of decision trees, Machine Learning https://doi.org/10.1023/A:1022643204877
  11. J. R. Quinlan, C4.5 : Programs for Machine Learning, Morgan Kaufmann, 1993
  12. L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, Wadsworth International Group, 1984
  13. M. Mehta, R. Agrawal, and J. Rissanen, SLIQ : A fast scalable classifier for data mining, In Proc. 1996 Int. Conference on Extending Database Technology (EDBT'96), Avignon, France, March, 1996
  14. J. Shafer, R. Agrawal, and M. Mehta, SPRINT : A scalable parallel classifier for data mining, In Proc. 1996 Int. Conf. Very Large Data Bases
  15. M. Kamber, L. Winstone, W. Gong, S. Cheng, and J. Han, Generalization and decision tree induction : Efficient classification in data mining, In Proc. of 1997. Int. Workshop on Research Isues on Data Engineering (RIDE'97)
  16. Jong Gyu Han, Yeon Kwang Yeon, Kwang Hoon Chi and Keun Ho Ryu, Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining, Proc. of Int. Conf. on Information and Knowledge Engineering, pp.348-358, 2002
  17. Lusted, L. B., Introduction to Medical Decision Making : Charles Thomas, Springfield, p.271
  18. Aspinall, P. J. and Hill, A. R., Clinical inferences and decisions-I. Diagnosis and Bayes' theorem : Opthalmic and Physiological Optics, Vol.3, pp.295-304, 1983
  19. Spiegelhalter, D. J.;Knill Jones, R. P., Statistical and Knowledge-based approaches to clinical decision-support systems, with an application in gastroenterology : Journal of the royal Statistical Society, A, Part 1, pp.35-77, 1984 https://doi.org/10.2307/2981737
  20. Aspinall, R. J., An inductive modeling procedure based on Bayes' theorem for analysis of pattern in spatial data : Internationl Journal of Geographical Information System, Vol.6(2), pp.105-121, 1992 https://doi.org/10.1080/02693799208901899
  21. Reboh, R. andReiter, J., A knowledge-based system for regional mineral resource assessment : Final report, SRI project 4119, p.267, 1983
  22. McCammon, R. B., ProspectorⅡ The redesign of Prospector : AI system in Government, pp.27-31, March, 1989, Washington D.C., pp.88-92, 1989 https://doi.org/10.1109/AISIG.1989.47309
  23. Reddy, R. K., Bonham-Carter, G. F. and Galley, A. G., Developing a geographic expert system for regional mapping of Volcanogenic Massive Sulphide(VMS)deposit potential : Nonrenewable Resources, Vol.1(2), pp.112-124, 1992 https://doi.org/10.1007/BF01782265