492

AR =EA voledlol: A 29 E A 6 T(00212)

EgA Aol 4 <A <B4 A9

(Four Consistency Levels in Trigger Processing)

+ . ¥+
4t & H ' Eric Hanson
(Jongbum Park)

* ¢ BF7 EFA AYNATP)= vojehHols ERYY 3o} gxHE Fol Ex)AS M3t
= AZEGe AMxHotk ATP WeMe EdA A9 A&FHN AANE Ssid 2Es vEYZ
(discrimination network)7} AR&-®th xpEs WEYIE YR AHE WE2y x==d AF30
TriggerMan2 d1}e] ATPEXN 213 WESIEN Gator WEANIE AHE3,

Holetujoj2e] g Wals EAWY) EE Py JLgPch EFA 279 ZANE EEe] Gator
HENZES 3PN ojFoi=, olw) Gator MEAZAY iR =xTo] Aigr EE] WA
£ A2dY 452 FA7s 98 WY F oA BAEA 4L WEAdge FRE EYA 44
Ty {Fasir)

o] =R, H439 o)y AAute FHEse EEZY HE HYE A s, ¥ kA EA A
A gig A9 e T 9B g uistd ¥y EE AYE s st 243 vlE
<2 Agsgct AYR JlEe AFY Wolge Aol FelE B FHHALH, °] Ve AAS
9 (materialized) 5 A (view maintenance)oll A8 4 3t}

F19= gy EQA A, dea dejepiols, A #W, sl e, WA EF A,

44

Abstract An asynchronous trigger processor (ATP) is a software system that processes triggers
after update transactions to databases are complete. In an ATP, discrimination networks are used to
check the trigger conditions efficiently. Discrimination networks store their internal states in memory
nodes. TriggerMan is an ATP and uses Gator network as the discrimination network.

The changes in databases are delivered to TriggerMan in the form of tokens. Processing tokens
against a Gator network updates the memory nodes of the network and checks the condition of a
trigger for which the network is built. Parallel token processing is one of the methods that can improve
the system performance. However, uncontrolled parallel processing breaks trigger processing semantic
consistency.

In this paper, we propose four trigger processing consistency levels that allow parallel token
processing with minimal anomalies. For each consistency level, a parallel token processing technique
is developed. The techniques are proven to be valid and are also applicable to materialized view
maintenance.

Key words : asynchronous trigger processor, active database, consistency levels, discrimination

network, parallel token processing, view mainienance

1. Introduction

Active database systems(1,2,3,4]

t A4 FEAwsn ALEASE v
jbpark@ata.ac.kr
+ w3 Y : SQL Server division, Microsoft
ehans@microsoft.com
=835 0 20029 39 49
Arigle : 20029 99 24

are

able

to

respond automatically to situations of interest that
arise in databases. The behavior of an active
database is described using triggers[4l. An
asynchronous trigger processor (ATP) is a
software system that processes triggers (checks
trigger conditions and executes ftrigger actions)
after update transactions to databases (data
sources, in general) are complete. An ATP,

EA HE 4 94 484 49 493

TriggerMan, is under development[5,6].

In an ATP, discrimination networks are employed
to efficiently check the conditions of the triggers.
Discrimination networks were originally developed
to check the conditions of the rules in the research
systems[7,8,9,101. TREATI[11],
Rete[12], and Gator[13] are types of discrimination

on Al production

networks. TriggerMan uses Gator (also known as
Gator network) as the discrimination network. The
changes to the data sources are delivered to
TriggerMan in the form of tokens. Parallel token
processing is one of the methods that can improve
the system performance. First, the topics of trigger,
TriggerMan, Gator network, and the necessity of
parallel token processing are explained in
subsections 1.1, 1.2, 1.3, and 1.4, respectively.
1.1 Trigger
In TriggerMan, a trigger can be defined as
follows[14](here, only the clauses relevant to our
discussion are shown):
create trigger <trigger_name>
from from_list
fon event_spec)
[when condition]
do action
The event_spec can be one of the insert, update,
clause. Three tables(student,
that will be used

section and a trigger based on those tables are

or delete class,

enrolment) throughout this
shown in Figure 1. The trigger dbms_enrolment
will execute its action when a student enrolls in
the DBMS class causing a tuple to be inserted into
enrolment.

Student-schema=(sno, sname, address, phone_umber}
Class-schema=(cno, cname)
Enrolment-schema=(sno, cno)

student (Student-schema)
class (Class—schema)
enrolment (Enrolment-schema)

create trigger dbms_enrolment

from student, class, enrolment

on insert enrolment

when student.sno=enrolmentsno and enrolment.cno=class.cno
and class.cname=DBMS

do print student.sname

Figure 1 Three tables and a trigger

1.2 TriggerMan
is an ATP that checks
conditions after update transactions to the database

TriggerMan trigger
are complete. In this paper, database tables and
generic data sources are collectively called data
sources. In an ATP, trigger actions run outside of
data sources. TriggerMan allows a trigger to have
a condition based on multiple data sources.
TriggerMan uses Gator network as a discrimination
network to efficiently test trigger conditions. The
internal state of TriggerMan is stored in the host
DBMS.

Basically, we assume that tokens are delivered to
TriggerMan in serial order. That is, tokens are
delivered in the increasing order of timestamps. A
token can have one of the following three event
types : © (plus; for an insertion operation on data
sources), © (minus; for a deletion operation), or
(delta; for an update operation). A token with event
type @ or © (called a token or a © token)
contains four components: event type, data source
name, tuple, and timestamp. A token with event
type & contains five components: event type, data
source name, old tuple, new tuple, and timestamp.
Token examples are shown in Figure 2. Depending
on the event type, a token contains one or two

tuple(s) of a database.

(D, enrolment, {st500, CS203}, 10:00am)
(8, class, {CS101, Introduction to Windows}, 3:00pm)
(8, student, {st200, JB, Cheongju, 0431-292-1234},
{st500, JB, Cheongju, 043-292-1234}, 4:32pm)

Figure 2. Three token examples

1.3 Gator Network

A Gator network has a general tree structure.
The root node of a Gator network called P-node is
drawn at the bottom. Other nodes in the Gator
network are condition checking nodes and memory
nodes. A Gator network is built for each trigger
defined in the system. A possible Gator network
for the trigger dbms_enrolment(Figure 1) is shown
in Figure 3. The tokens coming from data sources

494 AR} =R dojehulola A 29 @ A 6 Z(200212)

are fed into the leaf nodes (condition checking
nodes) of the Gator network. The leaf nodes check
data source names (table names) from which the

tokens are coming.

Remarks:»

[-sondtion~
sheckipgnodes

O “memery nodey

stream-of tokens.:

v

[g&lg—;d@s;” mmmlndm..)1 tplpmsnlrz, |

I dass crgme="DBMS"., H e |

e

0.C0=07.CR0w

Py

Figure 3 A possible Gator network for dbms_enrolment

Memory nodes contain tuples that partially match
the condition of a trigger. There are two kinds of
memory nodes:@ memory nodes(leaf nodes,
simply, @ nodes) and B memory nodes(internal
nodes, simply, B nodes). Every memory node
contains the qualifying tuples in it —— so assumed

in this paper to make the explanation simple[13].

In Figure 3, an node a logically contains the result of
select * from class where class.cname="“DBMS”

Similarly, a B node B; logically contains the result of
select * from class, enrolment where class.cname

=“DBMS” and class.cno=enrolment.cno

The memory nodes of a Gator network are tables
in the host DBMS(a commercial database) used for
the TriggerMan. The processing of a token against
a Gator network comprises; (1) the propagation of
the token downward through the network until no
more tokens are propagated or the propagated
tokens reach the P-node, (2) the application of the
token(s) propagated from the token to the memory
nodes on the token propagation path, and (3) the
execution of the action of the trigger, using the
tokens arriving at the P-node, for which the Gator
network is built. In TriggerMan[15], the application
of a token, tk, against a node, n, depends on the

event type of tk as follows:

@ : Insert the tuple in tk into n.

O : Delete the tuple in tk from n.

5 : Delete the old tuple in tk from n, insert the

new tuple in tk into n.

To propagate tokens in a Gator network, the
technique called query modification is used.
When a @ token arrives at a node n that has one
or more siblings (nodes which feed into the same
parent node), the system modifies the tuple query
template(TQT) stored in n. Each memory node
has a TQT in it. The modified query is submitted
to the host DBMS to find any tuples matching that
token. If the query returns no result, then the
propagation - stops. Otherwise, tuples in the result
are inserted into the parent node p of n, and the
token propagation process is recursively invoked on
p. For example, suppose a token tk, (&, Class,
{CS203, “DBMS”), 4:45pm), is inserted into a in
Figure 3. The system will create the following
query by modifying the TQT stored in a; using
tk. In the TQT, by tk.* we mean all the attribute
values of the tuple in tk.

select CS203, DBMS, ax.* from Q2
where a:.cno=CS203

If exist, the results are propagated to Bi.

1.4 Necessity of parallel token processing

To improve the performance of TriggerMan, we
need to exploit the concurrency available in the
system. Processing multiple triggers against a
single token is called trigger-level concurrency. A
study on the implementation of the rule-based
systems shows that the true speed-up expected
from rule-level concurrency is only about two fold
[16]). Some of the reasons for this are:

- The average number of rules that need to be

processed per change is quite small (around 28 in

their example) and is independent on the total
number of rules in the system.

-The speed—up obtainable from rule-level
parallelism is further reduced by the variance in
the processing time of the rules.

A token is a kind of change, and a trigger is a
kind of rule. However, two properties of Trigger

EA A 494 484 9 495

Man are different from the rule-based system.
First, for some applications, the average number of
triggers that need to be processed against a token
depends on the total number of triggers in the
system. Second, the processing of some triggers
involves the execution of SQL statements that
requires disk access while the processing of others
require no disk access (Gator network skeletons are
stored in main memory[6]). Therefore, the variance
in the trigger processing time can be large.

The first property of TriggerMan(large number
of activated triggers per token) could increase the
speed-up obtainable from trigger-level concurrency
for some applications. The second property of
TriggerMan (large variance in trigger processing
time) could decrease the speed-up. Since the two
properties of TriggerMan have the opposite effect,
from trigger-level

to further
improve the performance of TriggerMan,

we expect the speed-up

concurrency would be small. Hence,
other
kinds of concurrencies need to be exploited. They
include token-level concurrency, condition-level
concurrency, etc.[6,17].

Starting from the observation that uncontrolled
parallel token processing breaks trigger processing
introduces an

semantic consistency, this paper

innovative idea for exploiting the token-level
concurrency. To process tokens in parallel with
controlled and agreed—upon anomalies, we defined
four trigger processing consistency levels in Section
2. The

processing is explained in Section 3. Finally, a

proposed technique of parallel token

summary of this paper appears in Section 4.

2. Four Consistency Levels of Trigger
Processing

Token-level concurrency means parallel
processing of multiple tokens reaching the Trigger
Man. However, without concurrency control, the
parallel processing of the token that arrive at a
Gator network causes various consistency problems.
These problems are explained in Section 2.2, To
tackle these problems, we define four consistency

levels of trigger processing. The definitions of

consistency levels appear in Section 2.3. First of all,

the notational conventions are summarized in
Section 2.1.
2.1 Notational Conventions
The notations used throughout this paper are:
o tk, thi, the :
*ip, tpi, tp2 .
s tm, tmy, tmg @ timestamps
o thi(B, tp1), tho(O, tpz tmp) . tokens with event
types,
source names are omitted for the simplicity
« ts(tky) © the timestamp of tki

«q, ¢, ap :

tokens

tuples

tuples, and optional timestamps, data

a memory nodes

B, B, Bz : B memory nodes

2.2 Problems of Uncontrolled Parallel Token
Processing

When two tokens, tki and tks,

arrive at the Gator network N for a trigger T,

consecutively

assume they are fed into nodes (that can be either

an node or a P-node) i and n2 of N, respectively

(see Figure 4). The exhaustive four cases that can

happen are:

Case 1. The two nodes are the same (m=nz) and
tky and tkz update a common tuple.

Case 2, The two nodes are the same (n=n2) and
tky and tk2 update different tuples.

Case 3. The two nodes are different (ni=m) and
tky and tke or the tokens propagated from
them join (have the same join key).

Case 4. The two nodes are different (m=n2) and
tki and tk: and the tokens propagated

from them do not join.

thye

thy +

Bpr=ry
~es=P-nodes

Figure 4 Two tokens arriving at a Gator network

49% ARAEGI A

The problems of parallel processing in each case
are examined in the following paragraphs.

Case 1 (when m=n2 and tki and tk: update a
common tuple):

An example is given in Figure 5 where tk; and
tkz arrive at an node ai(=m=nz), consecutively.
In parallel execution, if tk» is applied to a; before
tk;, then later (when tk; is processed) tki will
remove the new tuple ¢p1’. Hence, tp)’ will not
exist after two tokens are processed leaving a;
corrupted. Let wus call this memory node
corruption.

Assume tk; and tky satisfy the condition of the
trigger T and n; is a P-node of N (Figure 4-a).
If tk; and tke were processed in serial, the action
of T would always be executed using tk; first.
When they are processed in parallel, the action of
T can be executed using tkz first which could be
unwanted by some users. Let us call this out-of-
order trigger action execution.

Case 2 (when mi=mn and tki and tkz update
different tuples):

If mi(=n2) is the P-node or both tki and tky are
propagated up to the P-node, then the parallel
out-of-order

token processing can create the

trigger action execution problem.

tk: (D, 1p,")
th (2, 1) Rematks:
;pplied ; applied o os(tk)) < ts(tkz)
3[ﬁ tater » key of fp; =key of tp,”
. : node content
5 Lo

Figure 5 A memory node corruption

Case 3 (when m;=ny and tk; and tk2 or the
tokens propagated from them join):

A part of the Gator network N is shown in
Figure 6 where tks deletes tps from a3 and tka
inserts ¢ps4s into as. Assume tky precedes thys and
tps and tps join. When two tokens are processed in
parallel, if tky is processed before tks, then thy (tps)
will join with ¢ps and propagates tks’ to Bi.
Therefore, a compound tuple <ips tps> will be

dloledoj 2 A 29 A A 6 Z(00212)

inserted into B1 and could be used in executing the

action of 7. However, when following serial
processing, tpz would be deleted by tks before thky
could join it, and tks’ could not be created. Let us
call the compound tuple <tps, tps> a phantom
compound tuple.

th, (D, tp,)
k: (S, 1)

Remarks:
o 1s(ths) < ts(thy)

(@, <tp,, 1p>) ® Ip; joins with 1p,

Figure 6 Untimely joining errors

In the same circumstances, assume tkz inserts
(not deletes) tps into a3 and tks deletes (not
inserts) tps from a. Following the serial token
processing, the compound tuple <tps tps> would be
inserted into B1 by tks. When the two tokens are
processed in parallel, if tks is processed before tks,
then the compound tuple would not be inserted into
B Let us call this the lost compound tuple
problem. The phantom compound tuple problem
and the Jost
collectively called untimely joining errors.

compound tuple problem are
In summary, the two types of untimely joining

errors are

¢ The creation of a compound tuple that never
existed (phantom compound tuple), because the
components of the compound tuple did not exist
at the same time period.

e The failure to create a compound tuple that
existed for a short time period (lost compound
tuple problem).

The timing error is the timestamp difference of
two tokens that are involved in the creation of an
untimely joining error. In Figure 6, when the
parallel processing of tks and tks creates a phantom
compound tuple or a lost compound tuple problem,
the timing error is ts(thky) —ts(tks).

Case 4 (when n;=nz and tk; and tk» and the
tokens propagated from them do not join):

2 A7 4 g4 984 =g 497

When both tk; and tke are propagated to the
P-node of the Gator network for 7, the parallel
processing of the two tokens can create the out-
of-order trigger action execution problem.

In summary, the uncontrolled parallel processing
of tokens that arrive at the Gator network for a
trigger T creates the following problems:

e out-of-order trigger action execution.

e The action of T is executed using a compound
tuple that never existed (phanfom compound
tuple).

e The action of T does not execute because the
system cannot detect a (transient) compound
tuple (lost compound tuple).

* memory node corruption.

2.3 Definitions of Trigger Processing Consistency

Levels

If we allow memory node corruption, then the
behavior of TriggerMan would be totally
unpredictable. Therefore, memory node corruption
should never be allowed. A complete list of factors
associated with the problems of uncontrolled
paraltel token processing (Section 2.2) are:

» The existence of the out-of-order trigger action
execution problem.

e The existence of an untimely joining error in
executing a trigger action.

e The amount of timing error when an untimely
joining error exists.

e The memory node contents whether they are

always true or guaranteed to stabilize. (A
memory node is said to stabilize if the parallel
application of a set of tokens arriving at the
node leaves the same final node content as the
content that would be produced by the serial
application of the same set of tokens.)

Using these factors, we define four consistency
levels in trigger processing. The lower the level is,
the higher the performance is, and the higher the
level is, the fewer the semantic problems exist.
The definitions of consistency levels are:

Level 0 The action of a trigger T will be executed

in Level 0 consistency if:

(a) the contents of the memory nodes of the Gator

network for T stabilize.
Level 1 The action of a trigger T will be executed
in Level 1 consistency if:
(a) the contents of the memory nodes of the Gator
network for T stabilize, and
(b) the timing error in an untimely joining error
is limited to a fixed value.
Level 2 The action of a trigger T will be executed
in Level 2 consistency ift
(a) the contents of the memory nodes of the Gator
network for T are always correct, and
(b) no untimely joining error exists in executing
the action of T.
Level 3 The action of a trigger T will be executed
in Level 3 consistency if:
(a) the contents of the memory nodes of the Gator
network for T are always correct,
(b) no untimely joining error exists in executing
the action of T, and
out-of-order action execution

(c) no trigger

problem happens.

3. Parallel Token Processing Technique

Due to the space limitation, among the proposed
techniques only the technique for the level 0

consistency is explained in this section. The
techniques for other consistency levels appear in [
token processing

17). To explain the parallel

technique for Level 0 consistency, we need to
define some new terms. When tokens are delivered
to TriggerMan, the system accumulates them and
creates batches. The period during which a batch
is formulated is called a batch period. The system
processes one batch after another. Tokens in one
batch could be processed in parallel. A cycle is the
time during which the tokens in one batch are
processed. Assume two tokens processed in a cycle
apply to the same tuple (of a memory node), that
By key of
a token, we mean the key of the tuple in the

is, the two tokens have the same key.
token. Then, the two tokens are said to be in one
family.

When multiple tokens of a family are processed

in parallel, the existence and content of the

498 BRAE EEA : dolguo] &

associated tuple depends on the token processed
last. This is a race condition that could corrupt the
An example of memory node
in Figure 5 (Section 2.2).

Obviously, a corrupted memory node cannot be

memory nodes.
corruption is given
stabilized. Memory node stabilization is a unique
condition of Level O consistency. Starting from the
next paragraph, we explained the technique for
memory node stabilization when the tokens arriving
at the Gator network are processed in parallel.

In the computer hardware arena, a Translation—
Lookaside Buffer (TLB) keeps the recent address
the address
translation speed in the virtual memory system[18].
We adopted the idea of TLB and created the
Stability-Lookaside Buffer (SLB)
memory nodes. An SLB maintains information on

translations in order to increase

to stabilize

the tokens which have been applied to a memory
node in a cycle. Although it depends on the length
of a batch period, the number of tokens in each
family (family size) would be one almost all the
time. Still the SLB is needed for the families with
The SLB controls the
application of tokens in a family for the memory
node stabilization. In short, the SLB is different

size greater than one.

from the TLB in terms of the theoretical
background (locality: TLB vs. anti-locality: SLB),
the content (address translation: TLB vs. tuple
modification status: SLB), and the purpose
(increase translation speed: TLB vs. stabilize
memory nodes: SLB).
%9,) Remarks:.
o key(tp;) =keyof tp;.

e ----:SLB.
H 1

. D : node content-

Figure 7 SLB content after a token application

For each tuple (of a memory node) modified
(inserted, updated or deleted) during a cycle, three
pieces of information (event type, key, timestamp)
are stored in an SLB for the memory node. The

A 2948 A6 2200212

three-piece information is called a line, and it is
about the token that updated a tuple most recently.
An SLB is cleared before the beginning of each
cycle. An example of an SLB is shown in Figure 7
where tk; arrives at a;. After the application of tk;
against d;, the content of the SLB and a; are
shown in the figure. The SLB maintenance cost
can be considered as ‘a tax for the stabilization of
memory nodes in the parallel token processing
environment.

Let each & and t2 be a token or an SLB line
that have the same key. When the timestamp of ¢
is greater than the timestamp of f;, we say ¢ is
younger than (; or ¢z is older than t;. A token
that is younger than any other token in its family
is called the youngest token.

For the stabilization, each node is equipped with
an SLB. Assume a token tk arrives at an node, nj,
that has the SLB, B, Then, tk is applied to ns
depending on the policy in Figure 8.

«when B) does not have a line having the same key as
tltx is the first applied token in its family),

(i) create a line in B for f, and

(ii) apply & to m using Table 1, or

*when Bi has a line ; having the same key as &,

—if t is younger than [, then

(i) update 1 using &, and

(i) apply & to n using Table 1,

—otherwise, discard # since % is older than /.

Figure 8 Token application policy to a memory
node n;

Theorem 1: If the tokens that arrive at an node
are processed using the technique explained in this
section (Figure 8), then the node stabilizes at the
end of each cvcle.

Proof: Since an a node is a set of tuples, an a
node stabilizes if and only if each tuple in the node
stabilizes. Assume each tuple in the node stabilizes
at the end of each cycle(condition). Each tuple in
an a node is associated with a (possibly empty)
token family in each cycle. Let F be the token
family that is associated with an a node tuple tp:
for a cycle c;. We can prove the above condition

EfA A 494 B4 #d

499

Table 1 The application of a token to a memory node n;

Case | Token event type Tuple exists in n; Action

1 D No Apply tk as usual (Section 1.3). Propagate tk.

2 S] Yes Apply tk as usual (Section 1.3). Propagate rk.

3 A Yes Apply tk as usual (Section 1.3). Propagate ik.
Transform ¢ into a a token. (The tuple in n; may be used as the old tuple

4 [52] Yes of tk.)
Apply tk as vsval (Section 1.3). Propagate k.

5 o No Discard tk.

N Transform ¢ into a @ token using the new tuple in it.

6 A No .

Apply tk as usual (Section 1.3). Propagate tk.

in F
the content of

by establishing that the youngest token
determines the existence and
(influences in short) tp; at the end of ¢;.

Each token in F will be applied or considered to
be applied (considered in short) to tp; during c;.
If the number of tokens in F (size of) is 0 or 1,
then obviously tp; stabilizes at the end of ¢ If the
size of F is greater than 1, then the influence of
the youngest token to tp; at the end of ¢; will be
established by proving that the voungest token
in F
(hypothesis). This will be done using mathematical

among the considered tokens influences t
induction on the number of considered tokens in F.

Basis: When the number of considered tokens is
1, let tk: be the considered token. Then, tk; is the
youngest token since it is unique and will certainly
influence tp; by Figure 8.

Induction: Suppose that the hypothesis is true
when the number of considered tokens is n—1. Let
tkn be the n-th considered token. Let tkm be the
youngest token among the n—1 considered tokens.
Then, by the hypothesis, tkn influences fp; just
before tk, is considered. If tkn is younger than tkm,
then tk, (the youngest among the n tokens) will
influence tp; by Figure 8. Otherwise (if tkn is older
than tkm), then tk, will be discarded by Figure 8.
In this case, tkm is the youngest token among the
n tokens and will continuously influence tp;. In
both cases, the youngest token among the n tokens
influences tp; at the end of ci.

Therefore, the stabilization of a general tuple
(tp1) is established, and it proves the stabilization

of an a node. O
The technique for B node stabilization is omitted
due to the space limitation.

4. Summary

In this paper, we proposed an innovative idea of
performance improvement for TriggerMan. The

performance improvement exploits the token-level

concurrency. However, as uncontrolled parallel
token processing creates problems in trigger
processing semantic consistency, four trigger

processing consistency levels were defined. The
purpose of consistency levels is to increase the
system performance on the expense of minimal,
controlled, and agreed-upon anomalies. The lower
the level is, the higher the performance is, and the
higher the level is, the fewer the semantic problems
exist.
Level 3

semantics to the outside world. Level 2 executes

provides serial token processing

trigger actions using each and every -consistent
data and
execution. Level 1 allows only a limited timing

allows out-of-order trigger action

error in the data that executes a trigger action.
Level 0 guarantees the stabilization of memory

nodes. However, in lower consistency levels, a
trigger action executes using inconsistent data only
when a series of accidents happens. For each
consistency level, we developed special techniques
for parallel token processing.

To process tokens with full parallelism in Level 0
the noble

consistency, technique of SLB was

500 BRI =FA : dojghuol= A 29 W A 6 T(A0212)

proposed. The SLB contents are modified by the
tokens that are applied to a memory node in a
cycle. a node stabilization technique using the SLB
was explained in this paper. The technique was
proven to be valid. Due to the space limitation, the
B node stabilization technique was omitted.

When the proposed techniques are employed in a
real system, like TriggerMan, we believe that it

will increase the performance of the system

considerably while generating consistency problems
relatively infrequently. Since a materialized view
can be seen as a kind of a node, the proposed

techniques can also be wused in maintaining

materialized views in an innovative way.

Since TriggerMan is under development, the

performance improvement analysis of the proposed
techniques cannot be executed. Nevertheless, we
believe that our technique will improve the system

performance in parallel token processing as

suggested by other study [16].

References

[1] Dayal, U., Hanson, E. and Widom,], Active
database systems. In W. Kim (¥ds.), Modern
database systems: the ohject model,
interoperability, and beyond, pp. 434-456, ACM
Press, New York, NY, Addison-Wesley, Reading,
MA, 1995.

[2] Stonebraker, M., Rowe, L. and Hirohama, M,
“The implementation of POSTGRESS,” IEEE
Transactions on Knowledge and Data Engineering,
Vol.2, No.7, pp. 125-142, 1990.

[3] Widom, J., “Starburst active database rule
system,” IEEE Transactions on Knowledge and
Data Engineering, Vol.8, No.4, pp. 583-595, 1996.

[4] Widom, J. and Ceri, S, Introduction to active
database systems. In J. Widom & S. Ceri (Eds.),
Triggers and Rules for advanced database
processing, Morgan Kaufmann, San Francisco, CA,
1996.

[5] Bodagala, S., Optimization of Condition Testing
for Multi-Join Triggers in Active Databases,
Ph.D. dissertation, CISE dept., Univ. of Florida,
1998.

[6] Hanson, E. N., Carnes, C., Huang, L., Konyala,
M., Noronha, L., Parthasarathy, S. Park, J. and
Vernon, A., "Scalable Trigger Processing,”

Proceedings of the 15th International Conference
on Data Engineering, pp. 266-275, Sydney,
Australia, 1999.

[7] Acharya, A. and Tambe, M. "Collection-oriented
match: Scaling up the data in production
systems,” (Tech. Report No. CMU-CS-92-218).
School of Computer Science, Carnegie Mellon
University, 1992.

[8]1 Butler, P. L, Allen, J. D. and Bouldin, D. W.,
"Parallel architecture for OPS5,” Proceedings of
the 15th International Symposium on Computer
Architecture, pp. 452-457, 1988.

[9] Gupta, A., Forgy, C., Kalp, D, Newell, A. and
Tambe, M., "Result of Parallel implementation of
OPS5 on the Encore multiprocessor,” (Tech.
Report No. CMU-CS-87-146). Computer Science
Dept., Carnegie Mellon University, 1988.

[10} Ishida, T. "“An optimization algorithm for
production systems,” IEEE Transactions on
Knowledge and Data Engineering, Vol.6, No.4, pp.
549-557, 1994.

{111 Miranker, D. P, TREAT: A new and efficient
match algorithm for Al production systems,
Morgan Kaufmann, San Mateo, CA, 1990.

[12] Forgy, C. L, "Rete: A fast algorithm for the many
pattern/many object pattern match problem,”
Artificial Intelligence, Vol.19, pp. 17-37, 1982.

(13} Hanson, E. N. and Hasan, M. S, "Gator: An
optimized discrimination network for active
database rule condition testing,”(Tech. Report No.
TRO3-036). CISE Dept.,, University of Florida,
1993.

[14] Cheng, H., Single-table rule condition evaluation
in an asynchronous trigger processor, MS thesis,
CISE dept., Univ. of Florida, 1997.

[15] Hanson, E. N, Al-Fayoumi, N., Carnes, C., Kandil,
M., Liw, H, Lu, M., Park, J. and Vernon, A,
"TriggerMan: An Asynchronous Trigger Processor
as an Extension to an Object-Relational DBMS”
(Tech. Report No. 97-024). CISE Dept., University
of Florida, 1998.

[16] Gupta, A., Forgy, C. and Newell, A., "High-Speed
Implementation of Rule-Based Systems,” ACM
Transactions on Computer Systems, Vol.7, No.2,
pp. 119-146, 1989.

{171 Park, J, Parallel Token Processing in an
Asynchronous Trigger System, Ph.D. dissertation,
CISE dept., Univ. of Florida, 1999.

(18] Patterson, D. A. and Hennessy, J. L, Computer
architecture! a quantitative approach, Morgan
Kaufmann, San Mateo, CA, 1990.

EfA A 4 94 4238 9

Jongbum Park

Jongbum Park graduated from the
Korea Air Force Academy in 1984.
In the field of computer science, he
earned a Bachelor's degree at Seoul
National University in 1988, a
Master’s degree at Pohang
University of Science and Technology in 1991, and a
Ph.D. degree at the University of Florida, in the
US.A, in 1999. Since then, he has been working as a
faculty member at the Korea Air Force Academy. His
research areas include Web data searching and active
database systems.

Eric N. Hanson

In the field of computer science, Eric
Hanson received his B.S. degree from
Cornell University in 1983, and
received the M.S. and the PhD.
degrees from the University of
California, Berkeley in 1984 and 1987,
respectively. From 1992 to 2001, he was an associate
professor in the CISE Dept. at the University of
Florida. Currently he is with the Microsoft. His
research interests include database management and
active database systems.

501

