Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control

유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계

  • 김상민 (전북대 공대 전자정보공학부) ;
  • 한우용 (전주대 공대 전기과) ;
  • 이창구 (전북대 공대 전자정보공학부)
  • Published : 2002.12.01

Abstract

This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

Keywords

References

  1. T. Hagglund and K. J. Astrom, 'Automatic tuning of PID controller', ISA, NC, 1995
  2. Vas. P., Stronach, A. F. and Neuroth M., 'Fuzzy, pole-placement and PI controller design for high-performance drives', Stockholm Power Tech., 1-6, 1995
  3. Li J. and Stronach A. F., 'Artificial neural network based control of electromechanical system', 4th European Conference on Control, IEE. Conventry, pp. 1065-1070, 1994 https://doi.org/10.1049/cp:19940283
  4. Vas. P., Drury W. and Stronach A. F., 'Recent developments in artificial intelligence-based drives: a review', PCIM, Nurnberg, pp. 59-71, 1996
  5. L. X. Wang, Adaptive fuzzy systems and control : design and stability analysis, Prentice Hall, 1994
  6. Y. Ishida, 'Nonlinear PID controller using neural networks', IEEE Int. Conf. on Neural Networks, pp. 811-814, 1997 https://doi.org/10.1109/ICNN.1997.616127
  7. Li Cs, Priemer R, 'Self-learning general purpose PID controller', Journal of the Franklin Institute, vol. 334B, no. 2, 1997 https://doi.org/10.1016/S0016-0032(97)81151-9
  8. Marian B. Gorzalczany, 'On some idea of a neuro-fuzzy controller', Information Sciences, vol. 120, no. 1-4, 1999 https://doi.org/10.1016/S0020-0255(99)00069-9
  9. D. W. Novotny and T. A. Lipo, Vector control and dynamics of AC drives, Oxford University Press, 1996
  10. W. Z. Qiao, M. Mizumoto, 'PID type fuzzy controller and parameters adaptive method', Fuzzy Sets and Systems, vol. 78, pp. 23-25, 1996 https://doi.org/10.1016/0165-0114(95)00115-8
  11. S. Gallchet and L. Foulloy, 'Fuzzy controllers: synthesis and equivalences', IEEE Trans. Fuzzy Syst., vol. 3, pp. 140-148, 1995 https://doi.org/10.1109/91.388169
  12. J. H. Im, C. G. Lee, 'Design of a neural network based self-tuning fuzzy PID controller', Trans. of KIEE, vol. 50, no. 1, pp. 22-30, 2001
  13. Derek P. Atherton, 'PID controller tuning', Computing & Control Engineering Journal, vol. 10, pp. 44-50, 1999 https://doi.org/10.1049/cce:19990202
  14. 한우용, 이창구, 김배선, 'Matlab/Simulink & dSPACE 보드를 이용한 유도 전동기 벡터 제어 시스템의 구현', 대한전기학회 논문지, vol. 49, no. 10, pp. 675-682, 2000