Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions(V) - Creep and Creep Recovery Behavior-

폴리에틸렌옥사이드 수용액의 유변학적 특성 평가(V) -크리프 및 크리프 회복 거동-

  • 장갑식 (부산대학교 공과대학 섬유공학과) ;
  • 송기원 (부산대학교 공과대학 섬유공학과) ;
  • 박영훈 (순천대학교 공과대학 고분자공학과)
  • Published : 2002.12.01

Abstract

The creep and creep recovery behavior of concentrated aqueous poly(ethylene oxirle)(PEO) solutions has been investigated at various shear stresses using a stress-controlled rheometer (AR1000). The critical stress to recognize the linearity of creep and creep recovery was determined. In addition, the creep and creep recovery compliances (linear and nonlinear) were examined in detail. Finally, the method to predict the dynamic (storage and loss) moduli using the retardation spectrum calculated from the linear creep compliance was discussed. Main results obtained form this study can be summarized as follows : (1) The creep compliance at small stresses shows a linear behavior. which is independent of the imposed stress magnitude. As the stress exceeds a critical stress, however. a nonlinear behavior is observed. (2) The nonlinear creep behavior occurs when the shear rate is abruptly increased with time. (3) When sufficiently large stress is imposed, the creep recovery compliance has a negative value because only viscous flow occurs during the creep recovery process without elastic recovery. (4) The prediction of dynamic moduli using the retardation spectrum calculated from the creep compliance proves more effective to describe the viscoelastic behavior in terminal region.

Keywords

References

  1. Techniques in Rheological Measurement A. A. Collyer(ed.)
  2. Viscoelastic Properties of Polymers J. D. Ferry
  3. Rheol. Acta v.37 Comparison of Different Shear Rheometers with Regard to Creep and Creep Recovery Measurements C. Cabriel;J. Kaschata
  4. J. Rheol v.29 A Rheometer for Characterizing Polymer Melts and Suspensions in Shear Creep and Recovery Experiments A. J. P. Franck
  5. Rheol. Act v.37 Using Instrumental Inertia in Controlled Stress Rheometry C. Baravian;D. Quemada
  6. J. Soc. Cosmetic Chemists v.19 Some Rheological Aspects of Cosmetics B. W. Barry;B. Warburton
  7. Trans. Soc. Rheol v.13 Rheological Properties of Molten Polymers(Ⅱ)-Creep Function of Commercial Polystyrene H. J. Karam;K. S. Hyun;J. C. Bellinger
  8. Trans. Soc. Rheol. v.13 Creep and Dynamic Mechnical Properties of Filled Polyethylenes L. E. Nielsen
  9. Rheol. Acta v.14 Viscoelasticity of Polystyrene Melts in Tensile Creep Experiments H. Munstedt
  10. J. Rheol. v.33 Nonisothermal Linear Viscoelastic Creep of an Amorphous Polymer in the Glass-to-Rubber Transition(Ⅰ)-Effects of Temperature History R. H. Sedath;J. M. Caruthers
  11. J. Food. Sci. v.56 Effects of Propylene Glycol Alginate and Xanthan Gum on Stability of O/W Emulsions G. Yilmazer;A. R. Carrillo;J. L. Kokini
  12. J. Rheol v.38 Creep Behavior of Electrorheological Fluids Y. Otsubo;K. Edamura
  13. AIChE J v.41 Oscillatory, Creep and Steady Flow Behavior of Xanthan-Thickened Oil-in-Water Emulsions R. Pal
  14. J. Chem. Phys v.110 Creep and Stress Relaxation in a Longitudinal Polymer Liquid Crystal : Prediction of the Temperature Shift Factor W. Brostow;N. A. D'Souza;J. Kubat;R. Maksimov
  15. J. Polym. Sci. Part B : Polym. Phys. v.38 A Discrete Complex Compliance Spectra Model of the Nonlinear Viscoelastic Creep and Recovery of Microcellular Polymers W. D. Armstrong;V. Kumar
  16. J. Appl. Polym. Sci v.77 Creep of Polyester Resin Filled with Minerals K. Aniskevich;J. Hristova
  17. J. Polym. Sci. Part B : Polym. Phys. v.35 Creep Recovery of Acrylate Urethane Oligomer/Acrylate Networks(Ⅱ) - Investigation of Diffrent Modes of Molecular Motion K. Kawate
  18. Rheol. Acta v.37 Influence of Molecular Structure on Rheological Properties of Polyethylenes(Ⅰ)- Creep Recovery Measurements in Shear C. Gabriel;J. Kaschta;H. Munstedt
  19. J. Rheol. v.23 Determination of Dynamic Storage and Loss Compliances from Creep Data D. J. Plazek;N. Raghupathi;S. J. Orbon
  20. Rheol. Acta v.36 Investigation of the Linear Flow Regime of Commericial Polymers by Numerical Conversion of MVM Creep Measurements M. Ringhofer;C. J. Brabec;R. Sobczak;D. Mead;J. Driscoll
  21. Rheol. Acta. v.36 An Intermediate Model Method for Obtaining a Discrete Relaxation Spectrum from Creep Data P. J. Dooling;C. P. Buckley;S. Hinduja
  22. Rheol. Acta. v.38 Creep Recovery Behavior of Metallocene Linear Low-Density Polyehylenes C. Gabriel;H. Munstedt
  23. J. Rheol v.44 Don't Cry for Me Charlie Brown, or with Compliance Comes Comprehension D. J. Plazek;I. Echeverria
  24. J. Appl. Polym. Sci v.72 Rheological Properties of Aqueous Polyacrylamide/NaCl Solutions M. T. Ghannam
  25. Arch. Rat. Mech. Anal. v.1 The Mechanics of Non-Linear Materials with Memory A. E. Green;R. S. Rivlin
  26. Arch. Rat. Mech. Anal. v.3 The Mechanics of Non-Linear Materials with Memory A. E. Green;R. S. Rivlin
  27. Arch. Rat. Mech. Anal. v.4 The Mechanics of Non-Linear Materials with Memory A. E. Green;R. S. Rivlin
  28. Trans. Soc. Rheol. v.11 An Experimental Study of a Nonlinear Material with Memory V. V. Neis;J. L. Sackman
  29. Trans. Soc. Rheol. v.11 A Modified Superposition Principle Applied to Creep of Nonlinear Viscoelastic Material Under Abrupt Changes in State of Combined Stress W. N. Findley;J. S. Y. Lai
  30. Trans. Soc. Rheol. v.15 Multiple Step, Nonlinear Creep of Polyurethane Predicted from Constant Stress Creep by Three Integral Representations K. G. Nolte;W. N. Findley
  31. Rheol. Acta v.17 Nonlinear Shear Creep and Constrained Elastic Recovery of a LDPE Melt M. H. Wagner;H. M. Laun
  32. Polym. Eng. Sci. v.27 On the Nonlinear Characterization of the Long Term Behavior of Polymeric Materials O. S. Brueller
  33. J. Rheol. v.35 Characterization of Nonlinear Creep Behavior of Two Food Products R. Lu;V. M. Puri
  34. Polymer v.38 Time-Dependent Deformation of Polypropylene in Response to Different Stress Histories B. E. Read;P. E. Tomlins
  35. J. Appl. Polym. Sci v.72 Mathematical Representation of Creep for High-Temperature Performance of Nylon6,6 Tire Materials L. Nkiwane;S. K. Mukhopadhyay
  36. Polymer. v.41 Fish Oil Thermosetting Polymers: Creep and Recovery Behavior F. Li. R. C. Larock;J. U. Otaigbe
  37. Polymermechanik F. R. Schwarzl
  38. J. Rheol. v.44 Recoverable Creep Compliance Properties of Associative Model Polymer and Polyxyethlene Solutions D. J. Plazek;Z. N. Frund
  39. Poly(Ethylene Oixde) F. E. Bailey;J. V. Koleske
  40. Rheol. Acta v.36 Extensional Rheology of Concentrated Pol(Ethylene Oxide) Solutions V. Gauri;K. W. Koelling
  41. J. Korean Fiber Soc v.33 Rheological Characterization of Aqueous Poly(Ethlene Oxide) Solutions(Ⅰ) - Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oschillatory Shear Deformation K. W. Song;G. S. Chang;C. B. Kim;J. O. Lee;J. S. Paik
  42. J. Korean Fiber Soc v.35 Rheological Characterization of Aqueous Poly(Ethlene Oxide) Solutions(Ⅱ) - Comparison of Steady Flow Viscosity with Dynamic and Complex Viscosities K. W. Song;G. S. Chang;C. B. Kim;J. O. Lee;J. S. Paik
  43. J. Korean Fiber Soc v.35 Rheological Characterization of Aqueous Poly(Ethlene Oxide) Solutions(Ⅲ) - Determination of Discrete Relaxation Spectrum and Relaxation Modulus from Linear Viscoelastic Functions K. W. Song;D. H. Noh;G. S. Chang
  44. J. Korean Fiber Soc. v.36 Rheological Characterization of Aqueous Poly(Ethylen Oxide) Solutions(Ⅳ) - Nonlinear Stress Relaxation in Single-Step Large Shear Deformations K. W. Song;S. H. Ye;G. S. Chang
  45. J. Food. Sci. v.50 Creep/Recovery Behavior of Oil-Water Emulsions : Influence of Disperse Phase Concentration N. Gldwell;R. R. Rahalkar;P. Richmond
  46. J. Texture Stud. v.18 Desktop Computer Based Collection and Analysis of Creep-Compliance Data on Fluid Foods M. A. Rao;S. F. Kash;H. J. Cooley;J. Barnard
  47. J. Texture Stud. v.19 A Computerized Method to Analyze the Creep Behavior of Viscoelastic Foods M. Balaban;A. R. Carrillo;J. L. Kokini
  48. Methods for Solving Incorrectly Posed Problems V. A. Morozov