Abstract
Many researchers have been tried to forecast the future as analyzing data characteristics and the forecasting methodology may be divided into two cases of deterministic and stochastic techniques. However, the understanding data characteristics may be very important for model construction and forecasting. In the sense of this view, recently, the deterministic method known as nonlinear dynamics has been studied in many fields. This study uses the geometrical methodology suggested by Poincare for analyzing nonlinear dynamic systems and we apply the methodology to understand the characteristics of known systems and hydrologic data, and determines the possibility of forecasting according to the data characteristics. Say, we try to understand the data characteristics as constructing Poincare map by using Poincare section and could conjecture that the data sets are linear or nonlinear and an appropriate model.
많은 학자들은 자료의 특성을 분석함으로써 장래를 예측하고자 끊임없이 노력하여 왔으며, 이는 아마도 확정론적 방법과 추계학적 방법으로 크게 대별할 수 있을 것이다. 그러나 예측을 하기 전에 먼저 자료의 특성을 파악하는 것은 모형 구축과 예측을 실행하는데 있어서 매우 중요하다 할 수 있다. 이러한 견지에서 최근 확정론적 방법으로 알려진 비선형 동역학적인 방법이 여러 분야에서 관심의 대상이 되고 있다. 본 연구에서는 비선형 동역학 시스템을 해석하기 위하여 Poincare에 의해 제안된 기하학적 방법을 이용하여 기존에 알려진 자료들과 실제 수문자료에 대한 특성을 비교 분석하였으며 자료의 특성에 따른 예측가능성을 판정하였다. 즉, Poincare section을 통해 Poincare map을 구축함으로써 자료의 특성을 파악하여 자료의 선형, 비선형성 뿐만 아니라 자료가 어떤 모형에 적합한지를 판단할 수 있었다.