INTERSECTION OF THE DEGREE-n BIFURCATION SET WITH THE REAL LINE

Young Hee Geum and Young Ik Kim

ABSTRACT. Definition and some properties of the degree-n bifurcation set are introduced. It is proved that the interval formed by the intersection of the degree-n bifurcation set with the real line is explicitly written as a function of n. The functionality of the interval is computationally and geometrically confirmed through numerical examples. Our study extends the result of Carleson & Gamelin [2].

1. Introduction

The degree-n bifurcation set denoted by \mathbf{M} is introduced by Devaney [4] and is defined to be a set of all complex values of c such that the critical orbit of the complex polynomial $P_c(z)=z^n+c$ does not escape to infinity. Rays of symmetry and k-periodic components are defined. Symmetry and some properties of \mathbf{M} as well as the parameterized boundary equation of the main component are described. The intersection of the degree-n bifurcation set with the real line is introduced by Carleson & Gamelin [2] for the case of n=2. In this paper, we investigate the intersection for general cases that $n\geq 2$. Typical cases are explored with computational results for $2\leq n\leq 1000$. The following notations and symbols are used throughout the paper.

C: set of all complex numbers.

R: set of all real numbers.

N: set of all natural numbers.

 $f^k(z) = f \circ f^{k-1}(z)$: k-fold composite map of f at z with $f^0(z) = z$.

 \bar{c} : complex conjugate of c.

Received by the editors January 12, 2002 and, in revised form, August 13, 2002.

²⁰⁰⁰ Mathematics Subject Classification. 00A69, 00A99, 32F45.

Key words and phrases. bifurcation, degree-n bifurcation set, Mandelbrot set, intersection.

Definition 1. Let $P_c(z) = z^n + c$ for an integer $n \geq 2$, with $c, z \in \mathbb{C}$. Then the degree-n bifurcation set is defined to be the set

$$\mathbf{M} = \left\{ c \in \mathbb{C} : \lim_{k \to \infty} P_c^k(0) \neq \infty \right\}.$$

If n = 2, it reduces to the Mandelbrot set (cf. Devaney [3], [4]).

Definition 2. The sets $\mathbf{P}_m = \{(r, \phi_m) : r \geq 0, \ \phi_m = m\pi/(n-1)\}$ are called the rays of symmetry for $m \in \{1, 2, ..., 2n-2\}$.

Theorem 1. M is symmetric about P_m for all $m \in \{1, 2, ..., 2n - 2\}$ in the c-parameter plane.

Proof. Let $c = re^{i\phi}$ with $r \ge 0$, $0 \le \phi \le 2\pi$, $i = \sqrt{-1}$. One can show recursive relations $T_k(\phi)$ for all $k \in \mathbb{N}$ as follows:

$$T_{k+1}(\phi) = T_1(\phi)(1 + T_k(\phi))^n$$
, where $T_1(\phi) = c^{n-1} = r^{n-1}e^{i(n-1)\phi}$.

It can be shown by induction that for all $k \in \mathbb{N}$ and $m \in \{1, 2, \dots, 2n-2\}$

$$\overline{T_k(\phi)} = T_k(-\phi) = T_k(2\phi_m - \phi).$$

By means of $T_k(\phi)$, we obtain $P_c^{k+1}(0) = c(1+T_k)$. Since

$$|P_c^{k+1}(0)| = r|1 + T_k(\phi)| = r|\overline{1 + T_k(\phi)}| = r|1 + \overline{T_k(\phi)}| = r|1 + T_k(-\phi)|$$
$$= r|1 + T_k(2\phi_m - \phi)| = |c^*(1 + T_k(2\phi_m - \phi))| = |P_{c^*}^{k+1}(0)|$$

with $c^* = re^{i(2\phi_m - \phi)}$, we have $c^* \in \mathbf{M}$ whenever $c \in \mathbf{M}$. This completes the proof.

Lemma 1. Let $n \geq 2$ be an integer. Then

$$\mathbf{M} = \{c \in \mathbb{C} : |P_c^k(0)| \le 2^{\frac{1}{n-1}} \text{ for all } k \ge 1\} \subset \{c \in \mathbb{C} : |c| \le 2^{\frac{1}{n-1}}\}.$$

Proof. If $|c| > 2^{\frac{1}{n-1}}$, one can show by induction on $k \ge 1$ that

$$|P_c^{k+1}(0)| \ge |c|(|c|^{n-1} - 1)^{n^{k-1}}.$$
 (1.1)

According to (1.1) $|P_c^k(0)| \to \infty$ as $k \to \infty$, we have $c \notin \mathbf{M}$. Thus $|c| \le 2^{\frac{1}{n-1}}$ for $c \in \mathbf{M}$, and $\mathbf{M} \subset \{c \in \mathbb{C} : |c| \le 2^{\frac{1}{n-1}}\}$. Now suppose that $|P_c^m(0)| = 2^{\frac{1}{n-1}} + \delta > 2^{\frac{1}{n-1}}$ with $\delta > 0$ for some $m \ge 1$. If $|c| = |P_c(0)| > 2^{\frac{1}{n-1}}$, then $c \notin \mathbf{M}$. If $|c| \le 2^{\frac{1}{n-1}}$, then

$$\begin{split} |P_c^{m+1}(0)| &\geq |P_c^m(0)|^n - |c| \geq (2^{\frac{1}{n-1}} + \delta)^n - 2^{\frac{1}{n-1}} \\ &= 2^{\frac{n}{n-1}} (1 + \delta \ 2^{\frac{-1}{n-1}})^n - 2^{\frac{1}{n-1}} \geq 2^{\frac{1}{n-1}} + 2n\delta. \end{split}$$

Proceeding by induction, we obtain $|P_c^{m+k}(0)| \ge 2^{\frac{1}{n-1}} + (2n)^k \delta \to \infty$ as $k \to \infty$ and $c \notin \mathbf{M}$. Thus

$$\mathbf{M} = \{ c \in \mathbb{C} : |P_c^k(0)| \le 2^{\frac{1}{n-1}} \text{ for all } k \ge 1 \}.$$

Definition 3. The attractive k-periodic component M'_k is defined as the set

$$\begin{aligned} \mathbf{M}_k' &= \{c \in \mathbb{C}: \ P_c(z) \text{ has an attractive-cycle} \} \\ &= \left\{c \in \mathbb{C}: \text{ there exist } z_0 \text{ such that } P_c^k(z_0) = z_0, \ \left|\frac{d}{dz} P_c^k(z)\right|_{z=z_0} < 1\right\}. \end{aligned}$$

For integers $n \geq 2$ the equation of boundary of \mathbf{M}_1' is easily derived from the elementary complex analysis Ahlfors [1]. Let $\partial \mathbf{M}_k'$ denote the boundary of \mathbf{M}_k' for $k \in \mathbf{M}$. Then Lemma 2 follows:

Lemma 2. The equation of $\partial \mathbf{M}'_1$ is given by

$$\begin{aligned} \{c \in \mathbb{C} : z_0^n + c &= z_0, |nz_0^{n-1}| = 1\} \\ &= \{(r, \theta) : r &= |c| = (1/n)^{n/(n-1)} \sqrt{n^2 + 1 - 2n\cos(n-1)\psi}, 0 \le \psi \le 2\pi\} \end{aligned}$$

with

$$\tan \theta = (n \sin \psi - \sin n\psi)/(n \cos \psi - \cos n\psi).$$

Proof. Parameterize

$$z_0 = \alpha e^{i\psi}, 0 \le \psi \le 2\pi$$

with
$$|z_0| = \alpha = (1/n)^{1/(n-1)}$$
. Then

$$c = z_0 - z_0^n = \frac{\alpha}{n} (n\cos\psi - \cos n\psi) + i\frac{\alpha}{n} (n\sin\psi - \sin n\psi).$$

After a detailed algebraic manipulation one can express r by means of ψ .

Remark. As a result of Lemma 2, when $\psi = 0$, $r = (1 - \frac{1}{n})(\frac{1}{n})^{\frac{1}{n-1}}$. Since θ is a monotone increasing function of ψ on $[0, \pi/(n-1)]$, it can be shown that $\psi = 0$ corresponds to $\theta = 0$ which states that $\partial \mathbf{M}'_1$ crosses the positive real axis at (r, 0).

2. Intersection of the Degree-n Bifurcation Set with the Real Line

In the following theorem, the interval formed by the intersection of the degree-n bifurcation set with the real line is explicitly written as a function of n using the results of Theorem 1 and Lemma 1.

n	$-2^{1/(n-1)}$	-ρ	ρ
2	-2.00000000000000000000		0.250000000000000000000
3		-0.38490017945975050967	0.38490017945975050967
4	-1.2599210498948731648		0.47247039371057743679
5	!	-0.53499224398113761920	0.53499224398113761920
6	-1.1486983549970350068	,	0.58235593230964937103
7		-0.61973145119955752250	0.61973145119955752250
8	-1.1040895136738123376		0.65012250149741493585
9		-0.67540949835697115318	0.67540949835697115318
10	-1.0800597388923061699		0.69683731441301435375
:	:	:	:
1000	-1.00069408178494375409		0.99211607219360468002

Table 1. End points of $M \cap \mathbb{R}$ as a function of n

Theorem 2. Let $n \geq 2$ be an integer. Then

$$\mathbf{M} \cap \mathbb{R} = egin{cases} [-2^{rac{1}{n-1}}, \;
ho], & \textit{if} \; \; n \; \textit{is even}, \ [-
ho, \;
ho], & \textit{if} \; \; n \; \textit{is odd}, \end{cases}$$

where $\rho = \left(1 - \frac{1}{n}\right) \left(\frac{1}{n}\right)^{\frac{1}{n-1}}$.

Proof. Consider $c \in [-2^{\frac{1}{n-1}}, 2^{\frac{1}{n-1}}]$ in view of the result of Lemma 1. Let x be a real fixed point of P_c such that

$$P_c(x) = x^n + c = x.$$

Case 1: When n is even. It is shown that $c=x-x^n$ assumes its maximum ρ at $x=(1/n)^{1/(n-1)}$. Hence it suffices to consider $c\in [-2^{\frac{1}{n-1}},\rho]$. Let a>0 be the largest real fixed point of P_c such that $a^n+c=a$. Indeed, one can show that $a=2^{\frac{1}{n-1}}$. For $0< c=P_c(0)=a-a^n\leq \rho < a$, it follows that

$$0 < P_c^k(0) < a^n + c = a$$

by induction on $k \ge 1$. Hence such $c \in \mathbf{M}$. For $-2^{\frac{1}{n-1}} = -a \le c = P_c(0) \le 0$, it is clear that for all $k \ge 1$ with even n

$$P_c^{k+1}(0) = P_c^k(0)^n + c \ge c \ge -a,$$

- $a \le c \le P_c^2(0) = P_c(0)^n + c = |P_c(0)|^n + c \le a^n + c = a.$

Proceeding by induction, $0 \le |P_c^k(0)| \le a$ for all $k \in \mathbb{N}$ with $-2^{\frac{1}{n-1}} \le c \le 0$. Hence such $c \in \mathbf{M}$. As a result, $\mathbf{M} \cap \mathbb{R} = [-2^{\frac{1}{n-1}}, \rho]$ if n is even.

Case 2: When n is odd. Due to symmetry given by Theorem 1, it suffices to consider for c > 0. For $0 < \rho < c \le 2^{\frac{1}{n-1}}$, we have $c = P_c(0) > \rho > 0$. Proceeding by

Figure 1. Typical degree-n bifurcation sets

induction on $k \geq 2$, we have $P_c^{k+1}(0) > P_c^k(0) > c > \rho$. Thus $\{P_c^k(0)\}$ is monotone increasing and not bounded above, from which $\lim_{k\to\infty} P_c^k(0) = \infty$. Hence such $c \notin \mathbf{M}$. For $0 \leq c \leq \rho$, let a > 0 be the largest real fixed point of P_c such that $a^n + c = a$. Proceeding by induction on $k \geq 1$, we have $0 \leq P_c^k(0) < a$ for all $k \in \mathbb{N}$. Hence such $c \in \mathbf{M}$. Consequently, the symmetry shows that $\mathbf{M} \cap \mathbb{R} = [-\rho, \ \rho]$ if n is odd.

Remark. The value of ρ is alternatively derived from the remark of Lemma 2. If n=2, then Theorem 2 reduces to that of Carleson & Gamelin [2]. Typical degree-n bifurcation sets are shown in Figure 1 in the c-parameter plane for $2 \le n \le 7$. The component \mathbf{M}'_k is identified by a number k and shaded in different patterns or colors.

Some computational results are displayed in Table 1 listing end points of $\mathbf{M} \cap \mathbb{R}$ as a function of n for $\leq n \leq 1000$. It can be easily shown that the interval $[-2^{1/(n-1)}, \rho]$ as well as the interval $[-\rho, \rho]$ approaches [-1, 1] as n tends to infinity. Although details of our elaborate numerical experiments are not shown here, careful measurements from Figure 1 show a good agreement with the result of Theorem 2.

REFERENCES

- Lars V. Ahlfors: Complex Analysis, An introduction to the theory of analytic functions of one complex variable, 3rd ed., International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978. MR 80c:30001
- Lennart Carleson & Theodore W. Gamelin: Complex Dynamics, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993. MR 94h:30033
- 3. Robert L. Devaney: An Introduction to Chaotic Dynamical Systems. The Benjamin/Cummings publishing Co., Inc., Menlo Park, CA, 1986. MR 87e:58142
- Chaos, Fractals and Dynamics, Computer experiments in mathematics. Science Television, New York; distributed by the American Mathematical Society, Providence, RI, 1989. MR 92a:58093
- (Y. H. GEUM) DEPARTMENT OF APPLIED MATHEMATICS, DANKOOK UNIVERSITY, 29 ANSEODONG, CHEONAN, CHUNGNAM 330-714, KOREA
- (Y. I. Kim) Department of Applied Mathematics, Dankook University, 29 Anseo-dong, Cheonan, Chungnam 330-714, Korea Email address: yikbell@yahoo.co.kr