DOI QR코드

DOI QR Code

Nitrogen Assimilation and Carbohydrate Concentration as Affected by the N Supply Form and Their Level in Shoot of Perennial ryegrass (Lolium perenne L.)

페레니얼 라이그라스에서 질소공급형태 및 수준에 따른 질소동화와 탄수화물 대사산물의 변화

  • Lee, Bok-Rye (Department of Animal Science & Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Jung, Woo-Jin (Department of Animal Science & Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Dae-Hyun (Department of Animal Science & Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Kil-Yong (Department of Biological & Environment Chemistry, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Tae-Hwan (Department of Animal Science & Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University)
  • Published : 2002.06.01

Abstract

To investigate the short-term effects of N-supply form ( $NO_3\;^-$ or $NH_4\;^+$ ) and their level (0.2, 1.0 and 6.0 mM) on N assimilation and C metabolism were examined in perennial ryegrass (Lolium perenne L.). The increase in shoot fresh for $NH_4\;^+$-fed plants much less than $NO_3\;^-$ fed ones. Nitrate concentration in $NO_3\;^-$ -fed plants tended to increase with increasing the supply level, while that of $NH_4\;^+$-fed plants was nearly stable. Nitrate reductase activity (NRA) responded much quickly, showing a proportional increase within 24 h of feeding. NRA in $NO_3\;^-$ -fed plants at 72 h increased by 13.7, 40.3 and 84.0% in 0.2, 1.0 and 6.0 mM $NO_3\;^-$ -fed, but it was not changed in$NH_4\;^+$-fed plants regardless of the supply level. After 72 h of treatment the sugar accumulation in the plants supplied with 0.2 and 1.0 mM -$NH_4\;^+$fed was remarked. After 72 h of feeding, fructan hydrolysis was observed in all levels fur $NH_4\;^+$-fed plants, but only in 6.0 mM for $NO_3\;^-$ -fed plants.

페레니얼 라이그라스에서 질소의 공급형태 ( $NO_3\;^-$ or $NH_4\;^+$) 및 수준 (0.2, 1.0 and 6.0mM)에 따른 질소동화와 탄수화물 대사산물에 미치는 영향을 알아보기 위해 nitrate, nitrate reductase, sugar 농도와 Fructan 농도를 조사하였다. $NH_4\;^+$공급구에서 잎의 생체량은 약간 증가하다가 같은 수준으로 유지되는 반면 $NO_3\;^-$ 공급구에서는 농도가 증가함에 따라 처음수준에 비해 약 25%에서 30% 증가하였다. $NO_3\;^-$ 공급구에서 Nitrate 농도는 Nitrate 농도가 더 높을 때 현저히 증가하는 반면에 $NH_4\;^+$ 공급구에서는 유의적인 변화가 없었다. Nitrate reductase activity(NRA)는 초기수준에 비해 0.2, 1.0 and 6.0mM $NO_3\;^-$ 공급구에서 13.7, 40.3 and 84.0% 각각 증가하였다.$NH_4\;^+$공급구는 실험기간 동안 유의적인 차이가 없었다. Sugar의 축적은 $NH_4\;^+$공급구에서 뚜렷이 나타났으며 특히 공급수준이 가장 낮은 0.2mM에서 107.2 mg $NO_3\;^-$ DW로 다른 공급수준에 비해 가장 높게 나타났다. $NO_3\;^-$ 공급구에서 sugar의 농도는 초기수준에 비해 같은 수준으로 유지되거나 약간 감소하는 경향을 보였다. 처리 후 72시간에서 fructan 농도를 비교할 때 $NH_4\;^+$공급구의 경우 3 공급수준에서 공히 유의적으로 감소하였으나, $NO_3\;^-$ 공급구에서는 약간 증가하거나 초기 수준과 비슷하게 유지되었다.

Keywords

References

  1. Barta, A.L. 1976. Transport and distribution of $^{14}CO_{2}$ assimilate in Lolium perenne in response to varying nitrogen supply to halves of a divided root system. Physiol. Planta. 38: 48-52 https://doi.org/10.1111/j.1399-3054.1976.tb04856.x
  2. Beevers, L. and R.H. Hageman. 1980. The Biochemistry of plants, Vol 5. Academic Press. London. pp. 115-168
  3. Beevers, L. and R.H. Hageman. 1983. Uptake and reduction of nitrate: bacteria and higher plants. In: Lauchli IA, Bielski, R., eds. Encyclopedia of plant physiology, Vol. 15A. Berlin, Heidelberg, New York: Springer-Verlag, 351-371
  4. Bloom, A.J., S.S. Sukrapanna and R.L. Warner. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by Barley. Plant Physiol. 99: 1294-1301 https://doi.org/10.1104/pp.99.4.1294
  5. Cataldo, D.A., M. Haroon, L.E. Schrade and V.L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Comm. Soil Sci. Plant Anal. 6: 71-80 https://doi.org/10.1080/00103627509366547
  6. Cawse, P.A. 1967. The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst. 92: 311-315 https://doi.org/10.1039/an9679200311
  7. Claussen, W and F. Lenz. 1995. Effect of ammonium and nitrate on net photosynthesis, flower formation, growth and yield of eggplants (Solanum melongena L.). Plant Soil. 171: 267-274 https://doi.org/10.1007/BF00010281
  8. Cramer, M.D. and O.A.M. Lewis. 1993. The influence of NO3- and NH4+ nutrition on the carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea maze L.) plants. Plant Soil. 154:289-300 https://doi.org/10.1007/BF00012534
  9. Davis, J. S. and J. E. Gander. 1967. A re-evaluation of the Roe procedure for the determination of fructose. Anal. Biochem. 19: 72-79 https://doi.org/10.1016/0003-2697(67)90135-2
  10. Deignan, M.T. and O.A.M. Lewis. 1988. The inhibition of ammonium uptake by nitrate in wheat. New Phytol. 110: 1-3 https://doi.org/10.1111/j.1469-8137.1988.tb00230.x
  11. Gerendas, J., Z. Zhu, R. Bendizen, R.G. Ratcliffe and B. Sattelmacher. 1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Zeischrift fur Pflanzenernahrung und Bodenkunde. 160: 239-251 https://doi.org/10.1002/jpln.19971600218
  12. Gojon, A., C. Grignon and L. Salsac. 1991. Distribution of NO3- reduction between rroots and shoots of peach-tree seedlings as affected by $NO_{2}$- uptake rate. Physiol. Planta. 82: 505-512 https://doi.org/10.1111/j.1399-3054.1991.tb02939.x
  13. Kafkafi, U. 1990. Root temperature, concentration and the ratio $NO_{2}$-/$NH_{4}$+ effect on plant development. J. Plant Nutri. 13: 1291-1306 https://doi.org/10.1080/01904169009364152
  14. Kandlbinder, A., C. da Cruz and W.M. Kaiser. 1997. Response of primary plant metabolism to the N-source. Zaitechrift fur Pflanzenernahrung und Bodenkunde. 160: 269-274 https://doi.org/10.1002/jpln.19971600221
  15. Macadam, J.W., J.J. Volenec and C.J. Nelson. 1989. Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades. Plant Physiol. 89: 549-556 https://doi.org/10.1104/pp.89.2.549
  16. Marschner, H. 1995. Mineral Nutriton of Higher Plants, 2nd edn. Academic Press, London
  17. Oaks, A. 1992. A re-evaluation of nitrogen assimilaion in roots. BioSci. 42: 103-111 https://doi.org/10.2307/1311651
  18. Paul, M.J. and S.P. Driscoll. 1997. Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency thought source: sink imbalance. Plant Cell Environ. 20: 110-116 https://doi.org/10.1046/j.1365-3040.1997.d01-17.x
  19. Pearson, J. and G.R. Stewart. 1993. The deposition of atmospheric ammonia and its effects on plants. New Phytol. 125: 283-305 https://doi.org/10.1111/j.1469-8137.1993.tb03882.x
  20. Peke, A.D. and W.D. Jeschke. 1995. Effects of nitrogen source, nitrate concentration and salt stress on element and ion concentration sin transport fluids and on C and N floes in Ricinus communis L. ln: Baluske F, Ciamporova M, Gasparikova O, Barlow P, eds. Structure and function of roots. Dordrecht, Netherlands: Kluwer Academin Publishers, 229-236
  21. Raab, T.K. and N. Terry. 1994. Nitrogen source regulation of growth and photosynthesis in Beta vularis L. Plant Physiol. 105: 1159-1166 https://doi.org/10.1104/pp.105.4.1159
  22. Salsac, L., S. Chaillou, J.F. Morot-Gaudry, C. Lesaint and E. Jolivet. 1987. Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem. 25: 805-812
  23. Schortemeyer, M., P. Peter and F. Boy. 1997. Ammonium tolerance and carbohydrate status in maize cultivars. Annals Bot. 79: 25-30 https://doi.org/10.1006/anbo.1996.0298
  24. Snir, N. and P.M. Neumann. 1997. Mineral nutrient supply, cell wall adjustment and the control of leaf growth. Plant Cell Envrion. 20: 239-246 https://doi.org/10.1046/j.1365-3040.1997.d01-57.x
  25. Van Handel, E. 1968. Direct microdetermination of sucrose. Anal. Biochem. 22:1341-1346
  26. Walch-Liu, P., G. Neumann, F. Bangerth and C. Engels. 2000. Rapid effcets of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot. 51: 227-237 https://doi.org/10.1093/jexbot/51.343.227