Mineralogical Evolution of Non-Andic Soils, Jeju Island

제주도 Non-Andic 토양의 광물학적 진화

  • 하대호 (연세대학교 지구시스템과학과) ;
  • 유장한 (한국지질자원연구원) ;
  • 문희수 (연세대학교 지구시스템과학과) ;
  • 이규호 (연세대학교 지구시스템과학과) ;
  • 송윤구 (연세대학교 지구시스템과학과)
  • Published : 2002.12.01

Abstract

While about 80% of Jeju soils are classified as Andisols, the soils derived from volcanic ash in Dangsanbong are not Andisols. There is a significant difference of precipitation in localities of Jeju island. The study area is characterized by the lowest amount of annual rainfall in Jeju Island, and by the layered silicates as dominant solid phase in clay fraction. The purpose of this study was to characterize the mineralogy of the non-Andie soils in detail, especially hydroxy-interlayered silicates. Two major soil horizons are recognized in the soil profile developed in the Dangsanbong area, which can be designated as A and C. The soil pH($H_{2}0$), ranges from 6.6 to 7.3 increasing with depth, is higher than that of typical Andisols(pH<6.0). While the pH(NaF), ranges from 9.49 to 9.81, indicates that significant amount of amorphous phases might be present as exchanging complexes. It is estimated to about 1.542.88 wt% by using chemical selective dissolution. The organic content of surface horizon is about 2 wt%. This soil are composed of quartz, feldspar and olivine as major constituents with minor of silicate clays. Quartz is frequently observed in A and distinctly decreases in its amount with depth, while olivine is dominant phase in C and rarely observed in A. In the <0.2$\mu\textrm{m}$ size fraction, smectite and kaolinite/smectite interstratification are dominant with minor of illite. The amounts of smectite decrease with depth, while the amounts of kaolinite/smecite interstratification increase with depth, which indicates the trend of mineral transformation with increasing the degree of weathering. The proportion of kaolinite in kaolinite/smectite interstratification is about 85%, and is not changed significantly through the profile. In the 2-0.2$\mu\textrm{m}$size fraction, vermiculite, smectite, illite and kaolinite are major components with minor of chlorite. Most of chlorite are interstratified with smectite. Chlorite which is not interstratified with smectite occurs only in surface horizon. The proportion of the chlorite in the chlorite/smectite interstratification is 59-70(%) and increases with depth. Hydroxy-interlayered vermiculite(HIV) with hydroxy-Fe/AI in their interlayers occurs in both A and C horizon. The amounts of hydroxy-Fe/AI decrease with depth. Hydroxy-interlayered smectite(HIS) of which interlayers might be composed of hydroxy-Mg/Al occurs only in C horizon. As the results of mineralogical investigation for the soil profile in the study area, clay minerals might be changed and evolved through the following weathering sequences: 1) Smectite Kaolinite, HIS, Vermiculite, 2) Vermiculite HIV Chlorite.

화산 쇄설물을 모재로 하여 발달한 제주도 토양은 많은 양의 비정질 물질을 포함하는 Andisols이 대부분을 차지하고 있으나, 강수량이 상대적으로 적은 제주도 서부 지역에서는 Andisols의 특징을 보이지 않는 토양이 발달하고 있다. 서부 해안에 접해 있는 당산봉에는 이와 같이 층상규산염광물이 우세한 non-Andic토양이 나타난다 본 연구는 당산봉 토양에 나타나는 층상 규산염 광물의 조성 및 풍화에 따른 이들 점토광물의 진화 과정을 밝히는데 그 목적이 있다. 연구 지역 토양은 A층과 C층이 발달해 있으며 B층은 나타나지 않는다. pH(($H_{2}0$)는 일반적인 화산 쇄설물 기원 토양(<6.0)보다 높은 6.6-7.3으로 하부로 갈수록 증가한다. pH(NaF)는 9.49-9.81로 비정질 물질의 존재를 지시하는 9.4보다 높게 나타나며, 선택적 용해법을 이용하여 구한 비정질 물질의 양은 0.55-1.02 wt%로 매우 낮다. 유기물 함량은 표토에서 2.00wt%로 Andisol에 비해 매우 낮다. 주 구성 광물은 석영, 장석, 감람석이며, 점토 입도를 구성하는 층상규산염 광물은 입도와 풍화정도에 따라 차이를 보인다. <0.2$\mu\textrm{m}$ 입도의 주 구성 점토 광물은 스멕타이트, 카올리나이트/스멕타이트 혼합층광물, 일라이트이다. 카올리나이트/스리타이트 혼합층광물의 카올리나이트의 비율은 85-86%로 깊이에 관계없이 일정하다. 풍화가 진행될수록 스멕타이트의 함량은 감소하며, 카올리나이트/스멕타이트 혼합층광물의 함량은 증가한다. 2-0.2$\mu\textrm{m}$ 입도의 주 구성 점토 광물은 질석, 스멕타이트, 일라이트, 카올리나이트, 녹니석이다. 녹니석은 표토에서만 나타나며, 하부에서는 나타나지 않는다. 녹니석/스멕타이트 혼합층광물 내의 녹니석 함량은 59-70%이며 풍화가 진행될수록 양은 증가한다. 그러나 풍화의 정도가 낮은 제일 하부에서는 녹니석/스멕타이드 혼합층광물이 나타나지 않는다. 질석과 스멕타이트의 일부는 층간이 hydroxy-Al/Mg/Fe으로 채워진 hydroxy-interlayered vermiculite(HIV)와 hydroxy-interlayered smectite(HIS)의 형태로 나타난다. HIV는 A층과 C층 모두에서 나타나며, 층간 물질은 hydroxy-Fe/Al이다. 층간의 hydroxy-Fe/Al의 양은 표토로 갈수록 증가하며, HIV를 형성하는 질석의 층 전하도 표토에서 높게 나타난다. HIS는 C층에서만 나타나며, 층간 물질은 hydroxy-Mg/Al이며, hydroxy-Mg가 우세하다. 본 지역의 토양에서는 풍화가 진행될수록 스멕타이트는 카올리나이트와 질석, HIS로 진화하였으며, 질석은 HIV를 거쳐 녹니석으로 진화하였을 것으로 사료된다.

Keywords

References

  1. 제주도 정밀토양도 농업기술연구소
  2. 점토광물학 문희수
  3. 암석학회지 v.7 제주도 당산봉 화산의 형성과정 황상구
  4. Clay Miner. v.15 Summary of recommendation of AIPEA Nomenclature Committee Bailey, S.W. https://doi.org/10.1180/claymin.1980.015.1.07
  5. Ph.D. diss., Virginia Polytechnic Ints., Blacksburge. Diss. Abstr. The formation and stability of aluminum interlayers in clays. Barnhisel, R.I.
  6. Minerals in soil environment Chlorites and Hydroxy interlayered vermiculite and smectite Barnhisel, R.I.;Berstch, P.M.;J.B. Dixon(ed.);S.B. Weed(ed.)
  7. Soil Sci. Soc. Am. J. v.61 Hydroxy-interlayered minerals in Japanese soils influenced by eolian deposition Bautista-Tulin, A.T.;Inoue, K. https://doi.org/10.2136/sssaj1997.03615995006100020037x
  8. Minerals in soil environment Montmorillonite and other smectite minerals Borchardt, G.A.;J.B. Dixon(ed.);S.B. Weed(ed.)
  9. Clay Miner. Bull. v.6 Ethylene glycol and glycerol complexes of smectites and vermiculites Brindley, G.W. https://doi.org/10.1180/claymin.1966.006.4.01
  10. Can. Mineral. v.6 Dioctahedral chlorite Brydon, J.E.;Clark, J.S.;Osborn, v.
  11. Geoderma v.29 Movement of aluminum as an inorganic complex in some podzolised soils, New Zealand. Childs, C.W.;Parfitt, R.L;Lee, R.
  12. Clay Miner. v.15 Clay minerals formed micas and chlorites in some New Zealand soils Churchman, G.J. https://doi.org/10.1180/claymin.1980.015.1.05
  13. Pedologie Duchaufour, P.
  14. Clay Miner. v.9 Morphology of allophane, imogolite and halloysite Eswaran, H. https://doi.org/10.1180/claymin.1972.009.3.03
  15. J. Soil Sci. v.34 Extraction of inorganic forms of translocated Al, Fe and Si in a podzol Bs hirizon Famer, V.C.;Russell, J.D.;Smith, B.F.L. https://doi.org/10.1111/j.1365-2389.1983.tb01056.x
  16. N.Z. J. Sci. v.9 The nature of allophane in soils. Ⅲ. Rapid field and laboratory test for allophane Fieldes, M.;Perrott, K.W.
  17. Methods of soil analysis: Part 1 - Physical and mineralogical methods(2nd ed.) Particle-size Analysis Gee, G.W.;Bauder, J.W.
  18. Soil Sci. Soc. Am. J. v.54 Isolation and characterization of an Iron-rich chlorite-like mineral from soil clays Ghabru, S.K.;mermut, A.R.;Arnaud, R.J. https://doi.org/10.2136/sssaj1990.03615995005400010045x
  19. Clays Clay Miner. v.16 Properties of vermicylites and semecties: expansion and collapse Harward, M.E.;Carstea, D.D.;Sayegh, A.H. https://doi.org/10.1346/CCMN.1969.0160605
  20. Geoderma v.13 Weathering chlorite in a soil derived from a chlorite-schist under humid tropic conditions Herbillion, A.J.;Makumbi, M.H. https://doi.org/10.1016/0016-7061(75)90059-2
  21. Internatl. Clay Conf., Denver, 1985, The clay minerals Sciety, Bloomington, Ind. Origin of clay minerals in Pennsylvanian strata of the Illinois Basin Hughes, R.E.;DeMaris, P.J.;White W.A.;Cowin, D.K.;Schultz, L.G.(ed.);van Olphen, H.(ed.);Mumpton, F.A.(ed.)
  22. Pedologist v.25 Implication of eolian dusts to 14 minerals in the volcanic ash soils in Japan Inoue, K.
  23. LOESS Geomorphological hazards and processes no.SUP.20 Accumulation of Asian long-range eolian dust in Japan and Korea from the late Pleistocene to the Holocene Inoue, K.;Naruse, T.;S. Okuda(et al.)(ed.)
  24. Soil chemical analysis-Advanced course(2nd edition) Jackson, M.L.
  25. J. Geol. Soc. Korea v.22 Tuff rings and cones on Jeju Island, Korea Kim, D.H.;Hwang, J.H.;Hwang, S.L.;Howells, M.F.;Reedman, A.J.
  26. Clays Clay Miner. v.31 Chlorites differentiated from intergrade smectites and vermiculties by solution stability criteria Kittrick, J.A. https://doi.org/10.1346/CCMN.1983.0310412
  27. Clays and Clay Minerals v.40 Characterization of the end of smectite-to-illinte transformation: Decoposition of X-ray patterns Lanson, B;Besson, G. https://doi.org/10.1346/CCMN.1992.0400106
  28. J. Korean Soc. Soil Sci. Fert. v.16 Studies on the physico-chemical properties and charaterization of soil organic matter in Jeju Volcanic Ash Soil Lee, S.K.;Cha, K.S.;Kim, I.T.
  29. Crystal structures of clay minerals Interlayers and intercalation complexes of clay minerals MacEwan, D.M.C.;Wilson, M.J.;Brindley, G.W.(ed.);Brown, G.(ed.)
  30. Soil Sci. Soc. Am. J. v.51 Layer charge properties of smectite and vermiculites: Tetrahedral vs. Octahedral Malla, P.B.;Douglas, L.A. https://doi.org/10.2136/sssaj1987.03615995005100050048x
  31. J. Soil Sci. v.39 Interlayer materials of partialy interlayered vermiculite in Dystrichrepts derived from Tertiary sediments Mausue, N.;Wada, K. https://doi.org/10.1111/j.1365-2389.1988.tb01202.x
  32. Can. J. Soil Sci. v.46 Dithionite- and oxalate-extractable Fe and Al as aids in differentiation various classes of soils McKeague, J.A.;Day, J.H. https://doi.org/10.4141/cjss66-003
  33. Japan. Soil Sci., Plant Nutr. v.28 Tropospheric origin of quartz in Ando soils and Red-Yellow soils on basalts Mizota, C. https://doi.org/10.1080/00380768.1982.10432391
  34. Proc. Int. Soil Classif. 9th, Japan. 20 July-1 Aug. 1987. Soil Manage. Support Serv. Eolian dust contribution to soil development on volcanic ashes in Japan Mizota, C.;Inoue, K.;D.I. Kinloch(et al.)(ed.)
  35. X-ray diffraction and the identification and analysis of clay minerals Moore, D.M.;Reynols, R.C.
  36. Methods of soil analysis. Part2. Agron. Monogr.9.(2nd ed.) Total carbon, organic carbon, and organic matter Nelson, D.W.;Sommers, L.E.;A.L.Page(et al.)(ed.)
  37. Nature v.279 Mobility and fractionation of rare earth elements during weathering of granodiorite Nesbitt, H.W. https://doi.org/10.1038/279206a0
  38. Aust. J. Soil Res. v.28 Allophane in new Zealand - a review Parfitt, R.L. https://doi.org/10.1071/SR9900343
  39. Aust. J. Soil Res. v.26 Estimation of forms of Fe and Al: A review, and analysis of contrasting soils by dissolution and Moessbauer methods Parfitt, R.T.;Chlids, C.W. https://doi.org/10.1071/SR9880121
  40. Catena Suppl. v.7 Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand Parfitt, R.L.;Wilson, A.D.
  41. Clays Clay Miner. v.16 Hydroxy interlayers in expansible layer silicate Rich, C.I. https://doi.org/10.1346/CCMN.1968.0160104
  42. Clays Clay Miner. v.21 The experimental transformation of mica toward smectite. Relative importance of total charge and tetrahedral substitution Robert, M. https://doi.org/10.1346/CCMN.1973.0210305
  43. Nature v.255 Experimental transformation of a chlorite into a vermiculite Ross, G.J.;Kodama, H. https://doi.org/10.1038/255133a0
  44. Soil Sci. Plant Nutr. v.32 Surface weathering in Zao tephra dominated by mafic glass Saigusa, M.;Shoji, S. https://doi.org/10.1080/00380768.1986.10557543
  45. J. Miner. Soc. Korea v.1 Composition and genesis of vocanic ash soils in Jeju Island.Ⅱ. Mineralogy of sand, silt and clay fractions Shin, J.S.;Travernier, R.
  46. Developments in Soil Sci. 21 Genesis of volcanic ash soils. Volcanic ash soils; Genesis, properties and utilization Shoji, S.;Dahlgren, R.;Nanzyo, M.
  47. Soil Sci. v.137 Active aluminum and iron in the humus horizons of Andosols from northeastern Japan: Their forms, properties, and significance in clay weathering Shoji, S;Fujiwara, T. https://doi.org/10.1097/00010694-198404000-00002
  48. Soil Sci. v.133 Chemistry and clay mineralogy of Ando soils, Brown forest soils, and Podozolic soils formed from fecent Towada ashes, northeastern Japan Shoji, S.;Fujiwara, Y.;Yamada, I.;Saigusa, M. https://doi.org/10.1097/00010694-198202000-00001
  49. J. Korean Soc. Soil Sci. Fert. v.27 Andic properties of major soils in Cheju Island Ⅲ. Condition for Formation of Allophane Song, K.C.;Yoo, S.H.
  50. Clays Clay Miner. v.23 Swelling and structural organization of saponite Suquet, H.;de la Calle, C.;Pezerat, H. https://doi.org/10.1346/CCMN.1975.0230101
  51. Clays Clay Miner. v.31 Intergradient verniculite-kaolinite mineral in Korean Ultisols Wada, K.;Kakuto, Y. https://doi.org/10.1346/CCMN.1983.0310303
  52. Spectrochim. Acta. v.35B The simultaneous determination of the major, minor and trace constituents of silicates rocks using inductively coupled plasma spectrometry Walsh, J.N.
  53. Poland: Clays and Clay minerals v.19 A mixed-layer kaolinite-smectite from Lower Silesia Wiewiora, A. https://doi.org/10.1346/CCMN.1971.0190610
  54. J. Korean Soc. Soil Sci. Fert. v.17 Chemical characteristics of coils in Cheju Island I. Variations in chemical characteristics with altitude Yoo, S.H.;Song, K.C.