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Proof of the Variability Propagation Principle
in a Pull Serial Line : Existence and Measurement

Sang-Woong Choe*

—a Abstract =

In this study, we consider infinite supply of raw materials and backlogged demands as given two boundary
conditions. And we need not make any specific assumptions about the inter-arrival of external demand and service
time distributions. Under these situations, the ultimate objective of this study is to prove the variability propagation
principle in a pull serial line and is to measure it in terms of the first two moments of the inter-departure process
subject to number of cards in each cell. Two preparations are required to achieve this objective : The one is to derive
a true lower bound of variance of the inter-departure process. The other is to establish a constrained discrete mini-
max problem for the no backorder (backlogging) probabilities in each cell. We may get some fundamental results nec-
essary to a completion for the proof through the necessary and sufficient conditions for existence of optimal solution
of a constrained discrete minimax problem and the implicit function theorem. Finally, we propose a numeric model
to measure the variability propagation principle. Numeric examples show the validity and applicability of our Study.

Keyword : Lower Bound of Variance. Constrained Discrete Minimax Problem
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1. Introduction

In the last two decades, there has been con-
siderable interest in the study and analysis of
the pull systems. The models used include ana-
lytic approaches as well as simulation approaches.
Analytic solutions exist almost exclusively for
the pull serial lines with deterministic or expone-
ntially distributed times (see e.g. Bardinelli, 1992 ;
Bitran et al, 1987 ; Buzacott, 1989 ; Deleersnyder
etal., 1989 ; Kim, 1985 ; Mitra et al., 1990, 1991 ;
Spearman, 1992 ; Tayur, 1993). On the other
hand, more complex systems are investigated
by simulation(see e.g. Aytug et al., 1998 ; Hum
et al., 1988 ; Blair et al, 1991 ; Huang et al.,
1983 ; Sarker et al., 1988, 1989 ; Philipoom et al.,
1987). Simulation by itself can not solve any opti-
mization problem. They have investigated impor-
tant steady state performance measures such as
throughput, average WIP and average flow time
under the ergodicity. The majority of pull re-
searches has treated the performance analysis
problem. And they have adopted the strong as-
sumption such as the infinite supply of raw mate-
rial and the infinite external demand process.

This study deals with derivation of the unique
fundamental structural property in a pull serial
line, which implies the variability propagation
principle (abbreviated VPP). And we consider
infinite supply of raw materials and backlogged
demands as given two boundary conditions. Fur-
thermore, we need not make any specific assump-
tions about the inter-arrival of external demand
and service time distributions.

In a push type ordering system, there is one
fundamental principle that seems remarkably
robust in explaining performances of stages in
series : the VPP, Suresh and Whitt (1990) have
not defined but described the VPP in the open
tandem queues (stages) with infinite buffer ca-

ox
ole

pacities as the following statement :

“Increased variability in the arrival process
or the service times of a queue (stage) tends
to propagate to the departure process from that
queue (stage) and thus to the arrival process to
a subsequent queue (stage).”

But Suresh and Whitt (1990) have not shown
conditions for existence of the VPP in the open
tandem queues (stages) with infinite buffer capa-
cities and have not considered the case of finite
buffer capacities necessary to a pull senial line.

On the other hand, in a pull type ordering
system, Kimura et al. (1981) and Muramatsu et
al. (1985) have pointed out characteristics of the
amplifications (propagations) of a production qua-
ntity, an order quantity and an inventory quantity
in each cell (stage) without explicit proofs and
conditions for existence of the amplifications
(propagations).

Although the results of many theories and
applications are very promising, it is clear that
there is still a need for the development of quan-
titative models to gain insight in the mechanics
of a card controlled pull system. Useful models
for serial pull systems are provided by the finite-
buffer literature for tandem queues. At any rate,
to date little work has been done on the analy-
tical approach to a derivation of the unique fun-
damental structural property in a pull serial line,
the VPP.

From these motives, two major problems in
a pull serial line can be identified :

i) Given the boundary conditions, does the VPP
exists in a pull serial line subject to general
service and demand schemes? If so, what
are the necessary and sufficient conditions
for existence?

ii) What model should be followed to measure
the VPP?
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These issues are addressed in this paper. In
particular, convergence of the inter-departure
process and measurement of its the first two
moments are with first priority required to an-
swer to these problems. The theories and models
proposed in this study may be ultimately applied
to the following major topics :

1) The Bull-whip effect in SCM (supply chain
management) may be quantified.

ii) Optimal arrangement of cells (stages) or opti-
mal assignment of servers in a pull serial line
may be obtained.

i) Any steady state performances including dis-
tributions may be easily computed, since they
functionally relate to the first two moments
of the inter-departure process.

iv) An equivalent push type serial line in view of
the inter-departure process may be ohtained.

2. Model formulation of a pull
serial line
Henceforth, the “pull” in this paper is meant

CELL (1)

........... ... 82 .

Gl D withdrawlarrival to outbound
p-card detachment

p-card attachment

w-card detachment

material arrival to inbound
waiting for or starting service
material arrival to outbound

. .

for the pure (traditional) card (kanban) control.
Although there are several ways of achieving a
pull type control systems, actual physical imple-
mentation of a pull control is most often achiev-
ed by means of a card (kanban) system.

As a result, the terms “kanban (card)” and
“pull” are used without distinction.

Pull systems may be either constant order
quantity, nonconstant withdrawl cycle or con-
stant withdrawl cycle, nonconstant order quantity.
In particular, the latter is also called a periodic
pull system. In this paper, the former is adopted.
Although the order quantity is fixed, the period
between “pulls” varies due to the randomness
of manual or machine processing time and ex-
ternal demand process.

In detail a series of cell may be represented
as [Figure 1], which is the same as shown in
Kimura et al. (1981) and Schonberger (1982). In
figure 1, w - card post is unnecessary since the
existence of information sensing and material

handling capabilities are taken for granted(Mitra

CELL (i+1)

( I:inbound , M : man or machine , O :outbound ,

PP :p-card post , WP : w-card post J

[Figure 1] Flow of cards and materials (containers) in a pull serial line
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et al. 1990).

As a result, descriptions of implementations
is identical to Mitra et al. (1990) and Tayur
(1993).

In this paper, a pull production line consists
of a series of cell, which is composed of a manu-
facturing node (inbound + man or machine), a
bulletinboard (p - card post) and outbound. A
manufacturing node and a bulletin board can be
described as the queueing model. Thus each cell
in the pull serial line consists of queue & out-
bound.

Items flow through the cells in sequence and
one operation is performed in each cell which
consists of one machine or one server. The lot
size and the batch size is 1 and there is only
1 type of item produced in each cell. External
demand arrives in a single unit. The service time
in each cell and the inter-arrival time of external
demand are assumed to be i.i.d and their means
and variances are known (distribution free, gen-
eral distribution).

In addition to, there is no transit time for the
movement of items between cells ; no scrap or de-
fectives are produced, and there is no down time.

There is infinite supply of raw materials to
the cell (1) and external demands are permitted
to be backlogged. Finally, there is a finite buffer
size in each cell, which is said to be a maximum

inventory level or a fixed number of cards.

3. Preliminaries

3.1 Nomenclature
We adopt the following nomenclature.

(N1) ie[0, m]- cell index, and note that 0

denotes raw material pool.

(N2) T;, i=0 --- maximum of inventory levelsor
number of cards in cell (D)

(N3) K; ={klk=1+271T,}
Kp={klk=1+27,T,)

(N4) C¥, k e K, time at which the withdrawl
order for the k_th material arrives at the
outbound of cell (i)

(N5) D¥, k K, time at which the k_th ma-
terial arrives at the outbound of cell (i)

(N6) Z¥, k € K; -+ time at which the k_th ma-
terial departs from the outbound of cell (i),
in other words, the k_th material arrives
at the the queue of cell i+ 1)

(N7) S¥i#0,keK; -processing
(service) time of the k_th material at the
queue of cell (i)

(N8) A(k), k € K,, - time at which the k_th
external demand arrives at the outbund of
cell (m)

(N9 {4Ci*=CF"'—Cf|keK;} - incre-
ments process of C¥, k € K;, and note that
m indicates the inter-arrivals (increments)
process of external demands denoted by

4dA(k), keKy,

(N10) {4D¥=D¥"!-D¥| ke K;} incre-

ments process of DY, k € K;
(N11) {4z¥=2z¥"'—-Z | keK;} - incre-
ments process of Z¥, k € K;, which deno-
tes the inter-departutre process of cell (i)
(N12) UF=8F-4z(,,i+0,keK,
(N13) W&; = Max (DY ' —Z¥,0), i#0,
k € K () - waiting time of the k_th ma-

terial in the queue of cell (i)
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(N14) If = Max(0, Z! — D¥),i+0,ke
Ky -+~ virtual idle time of man or machine
in cell (i)
0,if C¥2Df & zF=CF

(N15) J¥=11,if C*<(DF & zFk= DK

k € K;

(N16) ff=P(Jf =0) =P(Z¥ =Cl), k€K,

(N17) N; =M, + B;
M;, i # 0+ number of materials being
or being served in the queue of cell (i)
in the steady state
B;, i # 0 --- number of materials not im-
mediately satisfied when a withdrawal
order from cell i+1) arrives at the
outbound of cell (i) in the steady state
O;, i# 0+ number of materials in the

outbound of cell (i) in the steady state.
Aq(=#0) -+ external demand rate

(N 18) {

#;(#0),1#0 - service rate in cell (i)
(N19)
V(4Z)
[E(4z)]*
Chu = V(4A)A5, CEi = V(S)uf, i+0

Chis1 = ie[0,m+1]

kLiE(Azi‘, AA(k), S¥) =4Z;, 4A, S,

(N20) TG, i+1) =T+ T4y, i#0

A = Agr 2 Gt TIp(N; =n) -
effective arrival rate to cell (i)

i =g 229 TPP(N; =n) -

(N2 . )
effective service rate of cell (i)
Ad )
0 =—— .-+ traffic intensity of cell (i)
1#+0
Xi(v) [Xli s X2y 7 Xindi ]T
(N 22)

xi(p) < [pi, V(S;), Ty, Tiny 1"

E% -+ n—dimensional half space
(N23)

O -+ null vector

3.2 Convergence of inter-departure process

We let R denote the set of nonnegative real
numbers and let B,, the subsets of R, denote
the class of bounded Borel sets. The stochastic
processes {C{ |k €K;}and {Df |k €K;}
defined on the probability space (R, B,, P)
have independent increments, and are generated

by (1) and (2) respectively.

k—T; .
Zi+1 o , 1¥m

Ck= 03]
Ak) ,i=m
Df = Max(Z{ ;,Df™") + S},
2)
i#+0,keK i)

It follows from (N 4) and (N 5) that the sto-
chastic processes {Cf | k € K;}, {Df | k e K;}
are mutually independent. Also, by equation (1),
a stochastic process {ZF | k € K;} defined on
the probability space (R ., B,, P) has indepen—

dent increments and is generated by
Z¥ = Max(C¥, D)
Max(Z{;,""", Df), i#m &)
Max(A (k), Dy), i=m
In particular, the boundary condition of an in-
finite supply of raw materials requires {C¥ |k
e Ko} ={Z§ | k e Ky}
Thus, we need not consider {Dg | k € K, }.

{Z¥1i#0, k = K;} may be generated by

Zk=ciihi=0 4)
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where {C*"" | k = K,} implies that a with-
drawl order for the material arrives at the raw
materials pool.

In general, the stochastic processes { Cklk

€K}, {D¥ | keK;}and {ZF | k € K;} have
nonstationary increments since they can not be
represented as a sum of i.i.d.(independent and
identically distributed) random variables. In a
pull serial line, if either the p-card post of cell
(i) or the outbound of cell (i-1) is empty, then
the server remains idle until the earliest point
in time until both material and card are available.
In other words, a pull serial line is subject to
blocking (back order, backlogging) from time to
time. This is the reason why the stochastic proc-
esses {C¥lkeK,), (D keK;}and {Z} | k

e K,} can not be renewal processes.

Lemma 1 : If there exists a pull serial line such
that there is no down time, then we get the
following two results :

i) Three sequences of integrable random vari-
ables {W§; | keKy), {4Df | k €K )
{42}, | xeK (-1} defined on the proba-
bility space (R, B,, P) converge in L to
some random variables Wq ;, 4D;and 4Z;_,

respectively for each i.

E(ADi) = E(Azi—l)

i) { V({4D;) = 2V(S;) + 2E(Wg ) [E(S;)

—EMZ_DI+V(4Z,-)
)]

Proof : From the assumption that there is no

down time, any given pull serial line must be

always stable. This implies that

{(W]é.i)z | ke K}

is uniformly integrable and W§; converges in
probability to some random variable W ;.

That 1is, for every &> 0,

supy E[ (W)’ ] < o,

I;LIEP( |W1(()_i_WQ'i [ > E) =0

Thus, Wlé_i converges in L? to some random

variable Wq ;. By (N 13) and (N 14), we obtain

W —IF = DF — Z}') = UF+ W4,
(6)
WeH - IE=0

It follows from equation (6) and (N 12) that
AD¥ = UKt 41k + az¥f = sk +1F (D)

Since S¥*!are i.id. random variable, it is clear
that I¥ and 4D¥ converges in L®to I; and 4D;
respectively. Thus U¥ in equation (6) converges
in L? to some random variable U;. Similarly,
AZX | in (N 12) converges in L? to some ran-
dom variable 4Z;_;. Since all of W§ . I,
AD¥, UFand 4Z¥_ | convergein L?, as a mat-

ter of course, they converge in L!. Hence, based
on the (6), (7) and Lebesque’'s Dominated Con-

vergence Theorem, we have

E(1,) = —E(U;) ®)
E(4D;) = E(S;) —E(U;)) =E(4Z;_,) (9
E(12) - E(U?)

2E(U;)

E(Wq:) = (10

Note that S¥™! and I¥ are mutually independent.
By equation (8),
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V(4D;) = V(S + V(1) (11)
, which may be written as

V(4D;) = V(S;)+2E(Wg; )E(U;)+V(U;)
= 2V(S,)+2E(WQ|) *
[(E(S))~EMZ,_)]1+V(Z;_))
(12)
,since S¥ and 4Z¥_, in (N 12) are mutually inde-
pendent too. This completes the proof. ll

The inter-departure process {4Z} | keK ()}
and the finite scheme associated with this proc-

ess 2,(4 ZY¥) are represented as

AZ¥ =k ACK+(1— ¥ ) 4DF, 0<e¥<1 (13)
AC{‘, s.t. a!‘ =1
ADF, s.t. a¥ =0

0,(4z¥) = (14)
afACK+ (1—a¥) 4DF,
s.t. 0(011{(1

a¥ is a mixed distributed random variable

with the distribution is given by
0 , w.p. (1 _fi)z
1 , W.D. fiz

af =1 O.xF1, wp. —4f;(1-f)x (5

fom(al‘ln (@f)+(1—ef)in

(1—al))det

Proposition 1 : The sequences {f} |k € K ;}
and {af | k € K} are iid. random variables.
Proof : By the definition, it is obvious that J¥
and J¥*! are mutually independent for each k.

Let C¢,, C¥, denote the number of 0's and 1’s

in the pair (J K, %‘“) of an event defined in

(N 15). Then we obtain

P(Jk"‘o) = §=1Cg,rpr _ f:(+fi(+1
l szlzpr 2
P(Jk_l) _ lr1=lcll(,rPr _ Z—fi(_ﬁ(“
‘ t=12P, 2
4 £
Since ¥ = ——2'— and ¥ = f¥*!for each
k, we have

E(J¥) =EQI), V(I = v

, which means J¥ are i.i.d. random variables. Now
we may set {¥ = £, for all k. f, is a given con-
stant such that 0 <f; < 1.

k+1

And it is clear that ¢ ¥ and « ¥*! are mutually

independent for each k. It follows from equation
(15) that

E(af) = fi, V(o) = th1,0 - 1)
This means eFf are iid. random variables. Il

Under a finite scheme @, (4Z{), we may

calculate
Eq (4Z8), Vo (4ZF)

with the conditional expectation and variance,

which are given by
Eo (4Z¥) = fE(4CY) + (1—1;) E(4DY)
Vo (4ZF) = 1V (4CY) + (1 —£;)* V(4D})

+ —%fi(l —£,) (V(4CE) + V(4DY))

1
18

£,(1 — £;) (E(ACK) —E(4D¥))?
(15-1)

+
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Lemma 2 : If there exists a pull serial line such
that the external demand is permitted to be back-
logged, then we get the following two main
results :

i) {4C¥lkeKy)and {4ZF |k e Ky} de-
fined on the probability space (R, B,,P)
converge in L? to some random variables

ACiand AZl = a;- ACl + (1"01) . AD,
0< a; < L
E(4Z;) = f,E(4C;) + (1 —£,)E(4D;)
V(4Z;) = £2V(4C) + (1—1,)*V(4Dy)
11
+ —£;(1—£;) (V(4C))

i) 18

+ V(4D;)) + %fi(l_fi)

(E(4C;)—E(4D)))?

0<fi<1
(16)

Proof : In Lemma 1, there is no knowing
whether 4 Z‘; converges in L2 to some random
variable 4Z,, or not. In Lemma 2, however, by
the assumption of permitting backlogged de-
mands, it follows from equation (1) and (N 8) that
{AC; [k keKml={4AK) | keKm}
Since 4A(k) are i.i.d. random variables, it
is clear that 4CK converges in L? to some
random variable 4C,,. Then a finite scheme
2,(4Z¥) described in equation (13) tells us that
if we fix i=m in equation (13), 4Z¥ conver-
gence in L? of to some random variable 4Z.5,

In other words, note that Lemma 1 and Prop-
osition 1. Now, applying this fact, Lemma 1,
Proposition 1 and Continuous Mapping Princi—

ple to a finite scheme 2, (4ZF), then we obtain

4 C?‘ converges in L? to some random var-
iable 4C; for each ie[0,m—1].

Therefore,
lim E[(4CK-4C)°']=0 and

lim E[(42f -~ @4Ci— (1 — @) 4D;)°] =0

Now that 4Z¥ converges in L? to some random
variable 4Z;, it is clear that a conditional ex-
pectation also converges in L? to some random
variable and its some subsequence converges in

w.p. 1 (i.e. almost everywhere, almost surely)
to some random variable. Thus equation (16)
can be directly derived from the equation (15-1).
Finally,

E(a}) = £, V(a}) = 560 - )

implies f; += 0, which means also ¢; # 0. This

completes the proof.
4. Main results

4.1 Desirable lower bound of V(4Z;)

By (N 16) and (N 17), f; must be equal to
P(B; = 0). However, it is possible for us to
derive the distributions of B;, M; and O; only
when the distribution of N; should be given in

advance.

In this paper, we need not make any specific
assumptions about the inter—arrivals of external
demands and service time distributions.

Consequently, only approximate distributions
of the steady state random variables such as B;,

M,;, O; and N; may be available. This mmplies

that there are many possibilities of approx-
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imating their distributions. Therefore, it is nec-
essary that we should derive a true or desirable
lower bound on V{(4Z,) applicable to any approx-
imate to f; or P(B; = 0) on the basis of N;.
Also this necessity forces us to modify the
equation (13). Fortunately, there is at least one
mathematical technique to solve this problem,
which is the Taylor's Series. Maintaining an
identical expectation of 4Z, we will utilize the

Taylor's Series.

Proposition 2 : The lower bound on V(4Z;)
applicable to any given approximate to f; or P

(B;=0)1is represented as

4Z; = £,4C; + (1-£,) 4D; +

(E(4C;) — E(4D))a;~1;)
E(4Z)) = f{E(4C;) + (1—f,)E(4D))
V(4Z;) = £2V(4C;) + (1—£,)* V(4D;)

+ 22 £, (1—£)(E(4C) — E(D)Y

an
Proof : From equation (13), the lower bound
may be obtained by first order Taylor’s at the
neighborhood of

(af, 4CF, 4DF)=(E(a¥), E(4CY), E(4D}))
without remainder. Then we have
478 = £,4CK + (1 —£,) 4D¥ +

(E(4CE) —E@DY))(af — £))
E(4ZY) = ;E(4CYH + (1 — £;,)E(4D¥)
V(4ZF) = ££V(4C¥) + (1 — £)* V(4D¥)

+%f1(1—fi) (E(4C¥) —E(4DH))*
By Lemma 1, Lemma 2 and Proposition 1, the

equation (17) can be derived from equation (18)

in the steady state.
This completes the proof. H

Actually, it is impossible to overestimate the

importance of the lower bound on V(4Z;). A

concise functional form compared to the true

value of V(4Z;) enables us to easily manipulate

problems associated with proofs and structural
properties. It is not too much to say that we
cannot pay too much attention to this fact.
Now, we explicitly consider two boundary con-
ditions that infinite supply of raw materials and
backlogged demands are permitted to cell (1)
and cell (m) respectively. Therefore, what is the
implication of these conditions? We propose the
equivalent statement to these assumptions. Then,
relied upon these assumptions, we are with in—
tention of investigating into measurable rela-

tions among
4Dy, 4Z; and 4C;

representative of cell (i-1), cell (i) and cell (i+1)

respectively.

Theorem 1 : Suppose that there exists a pull se-
rial line such that infinite supply of raw materials
and backlogged demands are permitted, besides

E(U;) < 0. Then we have the following results :

E(4Z..,) = E(4Z,) = 71— {0, m]
d

V(4Z)mroe = 2V (4C;) + (1-£,)2V(4D))
11
+ ‘E‘fi(l_fi)(v(dci)
+V(4D;)),Chm+2 = Chu

V(4Z)rowr = £2V(AC) + (1—1;)*V(4D;)
Proof : In this proof, Lemma 1 and Lemma 2 are

implicitly used. It follows from equation (1) or
(4) that 4Z, = 4Cy = 4Z, . Hence,
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And by (4), (5) and (16), we obtain
fiE(AZi+1) - E(AZl) + (l—fl)E(Azl_1)=0

, which may be rewritten as

E(4Zy)) =
E(4Zy) + [E(4Z,) —E(4Z_))] -
Zizo[Hizo(f £1 )],iE[O,m] 20)
k

Infinite supply of raw materials implies f; = 1.

Thus, from equation (20), we have

Zheo| M — IR
In addition,
E(4Zn+y) = E(4Cr) = E(4A) = 1/
It follows from (4) and (5) that
E(4C;) = E(4D)).

Applying this relation to (16) and (17), then we

are done. [l

Corollary 1 : Suppose E(U;)<0. Then the fol-

lowing two statements are equivalent.

i) The infinite supply of raw materials and the
backlogged demands are permitted.

i1) Either backlogged demands or infinite de-
mands are permitted, and

P(N; =T({,i+1)) =0,P(N; =0)=1—p;,
0;<1l,Vie[l, m]

Proof : 1) i) implies ii).

By equation (19) and (N 21), we have

o
olo

B

E(42) = 5,0, m+1]

2) ii) implies 1).
By (N21) and equation (9), we have

1 1

A=HO=EuD) T EWz)

Since P(N; =T(,i+1)) =0,P(N;=0) =
I—ph

i - 1
Ty S A=A = =
E(4Zpns) ¢ M T Bz )

ie[l,m]
Thus we obtain either

1 1
E(Azm+l) E(Azm)

or

1 1 1

E(4Z,) _ E(4D,) _ E(4Z., )

This completes the proof. I

4.2 Constrained discrete minimax problem
for f;

We consider

P(N;=n) =F,( x| x®)=F.(x"),

ne [0, TG,i+ D], xPeE{ xP g™
(21)
Note that

Xi(")EEi">= E<+n>, xi(p)EE'L'(") - En+A(n>

since the set E% is closed.

To begin with, it is desirable of us to select

dE(Wq ;)

the elements in x{* such that
3 Xi(V)

= O for the purpose of enhancing the system
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performances.

Proposition 3 : Suppose that there exists a pull
serial line such that infinite supply of raw mate-
rials and backlogged demands are permitted,
besides E(U;) < 0. Then we have the follow-
ing results :
1) The necessary and sufficient conditions for
JE(Wq.;)

> 0O is given by
p xi(v)

aP(Ni:k)
3 x"

ifT; =2

< 0,Vkel[l,T;-1],
(22)

JE(Wy;)
— 2> 0
0 xi(")

Proof : By (N 17), we have

E (M;)

i) P
1

P(M;=T;) = 2} iV P(N;=k)
It follows from (23) that

0E(M;)

5 x @ = 20| k=T
Xi

d Xi(V)

(24)
By the Little’s Law, we know that

E(M;) = A - [E(Wgq;)+E(S)] 05
E(Wq;)=E(D;)-E(M;) - E(S;))

and this implies that

dE(Wq;)

0 Xi(v)

dE(M;)

9 x i(v)

If T; =1, then it is readily seen from (24) and

JE(Wo.)
0 xi(") B

(26) that

And we consider the case of T;>2.

By the (Corollary 1), we know that
ko P(N;=k) > 2 TG0 1p(N,=k)

and this shows that

»

1oy OP(N;=k)
. 0P (N;=k)
TG,i+1) -1 !
B

Since 2 GtV P(N, = k) = 1,
dP(N; =k)

Z T(@,i+1) - =0
k=0 -
J Xi(v)

From the (Corollary 1), we get easily

> T+ -1 IP(N; = k) -0

dx i(v) (27)

At any rate, equation (27) ensures VT;>2,
i < ]-v

J Xi(v)

T,—-1
k=1

(28)

0P (N;=k)
— < 0,Vke[l,T;-1]

P xi(v)
Therefore, by (28), we may derive

.H dP(N;=k)
ko [(k=T) ————==|> 0
a V)

(29)

It is readily from (24) and (26) seen that

dE(Wq.:)

0 Xi(v)

Conversely,
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&
B 2

if ————— <0,ke|[l1,T;—1]
ax™
VTiZZ, Pi<1
JE(Wq.i)

then it is clear that P
0 Xiv

And from (26), we obtain

IE(Wq,) . dE(M,)
——— > 0is equvalent to ————
9 Xi(v) P Xi(v)

This completes the proof. Il

Now we can define a closed set A4;SE{™ as

A = A = { X-(V) \ _‘—aE(W_—Q‘)

ax™

>0, xeE®™} (30)

such that A;#=@ and A;= A,=E{ = E.

Lemma 3 : Suppose that there exists a pull
serial line such that infinite supply of raw mate-
rials and backlogged demands are permitted,
besides E(U;)<0. Then we have

V(4D;) - V(4Z;;) 20

(VD) —V(4Z;_))
ax
V x{” e A;, and T;=1 with equality

<0 (3D

Proof : By (N 12), (N 13), (N 14) and Lemma 1,

we have
( —I,) =g ( —AZi_l) 54 Ii <t AZi_l

Since —E (I;)=E (U;)<0 and equation (10),

it follows

MaX[O,E([Si ]2)_2E(51)E(Azi-—1)]
2[E(4Z;-1))—E (S)]

(a)

V(S)+V(4Z_))
2[E(4Z;-,)—E (8]

SE(Wgp<

() [Ed)I* < E([L)?) <
Min[E([U;1%) , E([4Z-11%)]

(32)
From equations (5) and (30),
d(V(4D;) — V(4Z,_,))
3 % ()
IE(Wq;
=2[E(Ui)-——(—9i <0
P xi(v)

If T;=1, it follows from (5) and (33) that

V(4D;) —V(4Zi—))=2-V(S)=20
3(V(4D)) = V(4Zi-y))

J0x i(V)

And if T;>2, then it is evident that
V{4D;)—-V(4Z;_,)*+0
Therefore, by (5) and (33), we obtain

M1n[2V(S, ),

V(4D;) = V(4Z;-)2V(S)) — V(4Z;-y)

(35
This shows that
V(S) —V(4Zi_y) >0
V(D;) = V(4Zi_)) >0 (36)

3(V(4D;) —V(4Z;-))

ax™ <o

We are done. l
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As previously stated,
f,=P(B;=0)= 2, (P (N;=n)

implieS fi = fl( Xi(V)), Xi(V) € E:-n>.

Thus {; is continuous over the closed set A;.

Now we can define a set A as

JE(Wq.i)
A= mAi=[X(V) = rais
i=0 P X(V)
>0, xVea} (37)

such that A = A< A, = A, SE®™ = E.

And a function r( x ) is defined as

r(xW) =Max; [fi{( x™)],ielx = [0, m]
(38)

Note that 7{ x (")) is also continuous over A

since
l2(x ™) = o Xe("))l _
[Max ; [£;( x )] — Max ; [£;( x{”)]]
< Max; l f(x ™) “fi( Xe(v)) |,
icly,Vx&Mea (39)

Finally, J{ x?) and a directional derivative

are given by

J(x) ={i| f:(x™) = o( xP)}C1x (40)

c?r(xe("))
——— = lim
ad h—+0
z’(xé")+h- d)—z’( xé"))
h
dll?= d'd,V x{V, de 4 (41)

Now we consider the constrained discrete

minimax problem (P1) defined as

Inf xWMe Max iely [fl( X (V))]
(P1)

=Inf w_,[z(x")]
Lemma 4 : Let the function f;{ x ) be twice
differentiable in a neighborhood Na( xe(")) of

x. Then, ( x) is differentiable at x ¥

in any direction d € A and

82’( xéV))
{ 8d "
afi(xev)
Maxiej(xa(v>)[<—7;)——, d>] (42)
(A,B>= A"B

Proof : Using the Taylor’s series, we obtain

fi( x+h- d) = £,(xP) +

h. < 9f,( XéV))

- ,d>+0i(h;xé"), d)
X

Vielx , he (0, 8§

(43)
If we fix x&” and d, then
g,(h) = fl( Xév)+h . d)
(44)
Vielx, hE(O, 3)
By some calculations, we have
dg;(h) of; Xe(V)+h - d
= ( 5 ),d> )
0 X
dgi(o)
gi(h)=g;(0)+h- T +
dg;(h) dg; (0) o
h gi gi
fo( dh  dh )dh

It follows from (44), (45) and (46) that
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fi( x+h - d)=£(x7) +
ot (x&)
h- < ax™ d> +
ofi( xY
(x”) ’d>dh
gx™

h 6fi( x4n - d)
fo < ax™ -
(47)

From (43) and (47), we obtain

0i(h; x&, d) = |

h< afi( x+h - d)
0

a X(V)
at,( x&)

——W,d>dh 48)
X

which implies that

hlinlo Oi(h; x&7, d) =
0i(h; x&¥, d)

Jim, e =

Since fi( xe(")

) is continuous over A, Vie Iy,
there exists a positive number h, for all de A

such that

r(x+h - d) = Max ;o [fi( X7 +h - d)]

=Max () [fi( x;”+h - d)], Vhe(0,h,)
(50)
Thus, it follows from (49) and (50) that there
exists 0 < h, < & such that

r(x+h- d) =
Max oy oo) [£i( % +h - d)]
< r( xé")) +

(v)
h-MaXiEJ(x:v))[<_aﬂx_el, d>]

a x(V)
+ Max e, [0i(h; x&, d)], Vhe (0, h,)
(51)

Similarly, we obtain

r( xM+h - d) =
Max ;op, [£;( P +h - d)]
> r( xé")) +

af( x&M) , d>]

P X(v)

e Max () [(

+ Min iEIx[Oi(h; Xe(V), d)], Vhe (0, he)
(52)
Therefore, by (51) and (52), we have

Min i, [0:(h; x&, d)] <
T( XéV)'i'h . d) _ Z'( Xév)) -

ot ( x7)
P x(v) ’

d>] (53)

e Max oy ) [<

< Max i1, [0:i(h; &7, d)]
Vhe(0,h,), xY e, dea

which implies that

) r( M +h- d)— r(xe("))
lim —
h->+0 h

< afi( x&) ,d>

a x(v)

MaXiEJ(xem)

ar( xé"))

od
1

[ 31" XéV)
< (x”) ,d>
ax(v)
Vhe (0, h), xPe4a, dea

Maxiej(xg‘,))

(54)
This completes the proof. l

If we set

{ x,“’)---stationary point of T( X(V))

2(x @) = {¢( x&= x9) | 30, xPe 4)
(55)
then
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o xM) = Max e, [ fi( x:7)] =
Inf _w Ma.xielx[fi( X(V))] = (%)

xeA

Inf _w [ Z'( X(V))]

xVeAa

Theorem 2 : A necessary condition for a point

x & to be a minimum point of z( x ) is that

) )
Inf x(")eAMaX iEJ(x“")[ < ﬂé_(_%l
e . X
x¥ - x.(V)>] =0

or
ofi( x7)
Inf d.e 2(x&) Maxie}( x.“"){< P x(v) ’
de)] 20
(57)

Proof : i) Necessity
Suppose that the first equation in (57) fails to

hold. Then there is a point xe(") A such that

3f,{ X.(V)!

MaxieJ(xf")){< P X(v) ’ (58)
2~ xO)] = ¢ <o

The expression on the left of the first equation

in (57) cannot be positive. Clearly x+ x .

We set d.= x— 2. By equation (42) in
Lemma 4, (58) can be written as

=¢<0 (59)

and we obtain

2'( xM4n - d) = r(xe(v))+

(v)
he24x) o0 a) @)

Jod

)
tim 2hixe”.d) _
h—+0 h

, which enables us to reach to

z( x+h, - de) = z( x.("))-i-
ar( x&)

+0(he; xM, d.), >
54, ( x ) 0

(61)

And there exists a sufficiently small positive

€

number h, such that

- h,
| O(he; 28V, d.) | < — ¢2 ©62)
It follows from (59), (61) and (62) that
| o( x+h.d.)— «( x)—h | <
T2
Finally, from (63), we can derive
T x.(")+he- d.) < o x)+
e e

v)
2 < Z'( X )

(64) contradicts the assumption that x & e is

a minimum point(stationary point), since
Vheel0,1], ( xP+h, - de)ea .

i) first equation in (57) = second equation in
in (57)

If this is not true, we may suppose that the first

equation in (57) holds but there is a vector

d.e 2( x{7) such that (59). By the definition

of 2( x7), there is a vector ve 2( x{7)

such that

afi ’(V)
(x ),v>s€?($)

Max iEJ(xf"’) [<W

Since ve2( x{), we have

v=¢(x"= xM), 90, xPen
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Hence, by (65), we have

of( x{7)
Max () < w
J x s (66)
xe(V)_ X,(V)>]S ﬂ <0

which contradicts the first equation in (57).

i) first equation in (57) = second equation in
(57)

If this is not true, we may suppose that the

second equation in (57) holds but there is a point

xS« A such that (58). Clearly
xe(") + x

By (58),

af,( XEV))
Maxiel(xp)) <—5x(—v)' ,

x = xM)] = ¢ <0

67

(67) contradicts the second equation in (57),
since des@( x{V), 2( x&).
This completes the proof. l

Suppose for all i, f;{ x ™Y is strictly quasi-
convex. Then, z( x ) is strictly quasiconvex.
Ifo{ x™)is strictly quasiconvex, the necessary
condition, i.e. equation (57) in Theorem 2 is also

sufficient.

If a set Ac is defined as
A(Ac) <o, Ac= AcC A

Ac={x& | xMea, | x - xV | <1}

(68)

then by the Heine-Borel~Lebesque theorem and

the Mini-Max theorem, (P1) can be converted
into (P2) given by

Min oo Maxier [(xP)] (py

=Min Lw [(x™)]

Lemma 5 : Let D;(.) be the implicit function of
f; defined by equation (19) and (Dp;, D¢ ;,
Dz'i)T be the gradient vector of a function
D;(.) respectively.

Suppose the V(4Z;)1owrr. Then,

f(x™), Vi is strictly quasiconvex

if and only if Dz;>0, Vi and x{".
Proof : By equation (19), the implicit function of

f; can be defined as

since f;(V(4D)+ V(4C,)) — V(4D;)+0 .
And by some calculations, the gradient vector

of a function D;(.) is given by

(=Dz,; (1—1)% —Dgz,if{, D))",

1

Dzi = (VD) FV4C )T - 2V (4D))

(70

and the hessian matrix of a function D;(.) de-

noted by Hp, (.) satisfies

ViTHDi( Vi) v; =20,
{ Vv;=(V({D;),V(4Ci),V(IZ N+ 0
(71)
The equation (71) means that
i D;( Vi,z) = Dg( Vi_x) + B;r( Via2— Vx.l)

Bi=(—Dz;(1—1)% —Dzf!,Dzat vi,

V Vig+ Vi (72)

Also some calculations shows that



[(DiCvia)—Di( v; DI[Di(vi ) —Di( v;3)]>0

Via=0ivi1+(1—68) vy, 06, <1

V Viz¥F Vi (73)

Thus, equations (72) and (73) implies that for all

i, £;( x™) is strictly quasilinear. That is,

Mil’l [D,( vi,l)’Di( Vi,2)] <
{ Di{ vi3 < Max[Di( v; ), Di( v; )]

Hence it follows from equations (57), (72) and
(73) that £;( x ?) is strictly quasiconvex if and
only if D; >0, Vi and xV.
This completes the proof. W

Now, we propose the variability propagation

principle in a pull serial line as the Theorem 3.

Theorem 3 : There exists the variability pro-
pagation in a pull serial line with the infinite
supply of raw materials and the backlogged
demands if and only if there is at least one

element in x& such that satisfies (30), (37)
and

D;>0, Viand x™.

Proof : The equation (19) in the Theorem 1
implies that if f;( x ) is strictly quasiconvex
under V(4Z;)iower, then f;( x) is also
strictly quasiconvex under V{(4Z;)tgye © If

there exists no variability propagation under

V(4Z;)10wer, then there also exists no vari-
ability propagation under V(4 Z,) true-
By the Lemma b5,

£;( x ™) satisties Dz;>0, Vi and x{¥.

Thus,
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V(4Z;.,) = V(4C;)=V(4Z;) since f;<]1.
By the given boundary conditions,
C,%\.l = C?\,z, C?\.mw = Chu
Consequently, by (N 19) and (19) in Theorem 1,
Ch1=Ch2 Chme2=Chu,Chis22China

which indicates the VPP.

And it is obvious that C% ;e x{¥.

This completes the proof.

In a pull serial line with the infinite supply of
raw materials and the backlogged demands, if

there is at least one cell (i) such that Dz ; <0,

Vv x{ then there exist subsequences for i

such that the variability propagates.

5. Numeric model and examples

5.1 Numeric model

In brief, we introduce the numeric model for
computing the C4 ; embedded in a pull serial
line with the infinite supply of raw materials and
the backlogged demands.

The nonlinear simultaneous equations in
<Table 1> may be converted into a constrained
optimization problem. Also it can be proved that
this constrained optimization problem is uni-
modal, which means that there exists a unique
optimal solution. In addition, we can model this
problem with the augmented Lagrange multi-
pliers and prove that the algorithm used to solve
this problem has the convergence order of 1. All
proofs associated with these issues are omitted
for want of space (see Choe, 2002). And codes
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{Table 1> Nonlinear simultaneous equations for the
squared coefficient of variation of inter-
departure process

Find :
Civ>0,he[l,m+2],iell, m

C,za,m+z = C%M
Ch.iez=M(@) - Ci iy — NG - Ch
~2-25-NG) - 88(i)

2

. Cs.i 1 1
SS() = —=+ E(Wg,) (M Ad)
Cfx.z =C3x.1

E(M;) 1
E(Wq) = Ag - i
_ A
o= 2
2
(—}) , LOWER
MG =" " 8
————— TRUE
T-f2411-4,
1-1£4°
( - ),LOWER
NG) =

7-12~925-1, + 18

5 . TRUE
724116

E(M;) = 275 xP(M;=%)
f,=1-p,+Cp; * 2 a1 P(N; =n)

[

IflT"'_lP(Ni=n)

Cpi =

Toer =big M

P(M; =x) = | Cp,;P(N;=x), xe[1,T;— 1]
Cpi 2 ai*DIP(N;=n) ,x=T;

(1-0)&,.n=0
P(N;=n) = "‘(l_r‘)"nfl'}‘,{e[1,T<i,i+1)—1]
oll=prTEH+D=15 (o T i+ 1)
&= l_piz_r?l‘(i,Hl)—l
n=1- E(iii)
By = 0GR (ACE +Chy)

(1= p)(oiCE.i + 1)

implementing this algorithm are compiled with
the Borland C++(Version 3.0 or 3.1).

5.2 Numeric examples

To begin with, we set
Ad = 1, V(Z]A) = V(S,) = 00625,
T; =2, big M=20, m=8.

and consider

[IBWL] = (2.0,1.5,1.5,1.1,1.1,1.5,1.5,2.0)
[BWL] p=(1.1,1.5,1.5,2.0,2.0,1.5,1.5,1.1)
[LMH] #=(2.0,2.0,1.5,1.5,1.5,1.5,1.1,1.1)
[HML} = (1.1,1.1,1.5,1.5,1.5,1.5,2.0,2.0)

, where IBWL, BWL, LMH and HML denote in-
verse bowl, bowl, low-medium-high and high-
medium-low respectively.

The results to be reported on the experiments
performed with our study can be divided into
the following two groups :

(1) computing the squared coefficients of varia-
tion of inter-departure process under the
lower bound.

(2) if (1) is successfully performed, quantifying
some issues associated with distribution in-
cluding under the true value.

<Table 2> shows that there exists an opti-
mal solution for <Table 1> in all problems. Thus,
further experiments are required.
Results of experiments are given by <Table
3>~<Table 7>.
If we consider

Ag =1, V(4A) = 0.0625, V(S;) = 0.0,
T; = [i mod 2]+1, big M=20, m=20.
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and ¢ = 0.2-k+0.9,ke[1, 20], then results <Table 5> Time in system under true value
of experiments are to be given by [Figure 2]. [BWL] | (BWL] | [LMH] | [HML]
Mean | 160000 | 160000 | 160000 | 160000
(Table 2> (Ci,;)‘ under lower bound Variance | 47460 4TI 477700 47474
(Ch0"| UBWL] | (BWL] | [LMH] | [HML] (Table 6) (Cg,)*under true value
1 00438 | 00412 | 00417 | 00436
2 00438 | 00412 | 00417 | 0.0436 (Cp,)" | BWL] | [BWL] | [LMH] | [HML]
3 00439 | 00473 | 00418 | 00502 1 10002 | 10107 | 10002 | 1.0107
4 00445 | 00478 | 00419 | 0.0580 2 10009 | 10009 | 10002 | 1.0107
5 00451 | 00485 | 00424 | 00588 3 10009 | 10009 | 10009 | 1.0009
6 00520 | 00486 | 00430 | 00597 4 10107 | 10002 | 10009 | 1.0009
7 00602 | 00488 | 00435 | 0.0606 5 10107 | 1.0002 | 10009 | 1.0009
8 00610 | 004% | 00440 | 00616 6 10000 | 10009 | 10009 | 1.0009
9 00620 | 00801 | 00507 | 0.0619 7 10009 | 10009 | 10107 | 10002
10 0065 | 0065 | 0065 | 00625 8 10000 | 10000 | 10000 | 1.0000
(Table 3) (Ch..)"under true value (Table 7> E(Wq,;)" under true value
(CA.)"| IBWL] | [BWL] | [LMH] | [HML] E(Won'| UBWL) | (BWL | LMH] | (ML)
1 00623 | 00621 | 00621 | 00623 1 00340 | 03174 | 00340 | 03176
2 00623 | 00621 | 00621 | 00623 5 0ors | oo | omo | ose
3 00623 | 00622 | 00621 | 00623 5 0o | oo 1 oorr 1 oorrs
4 00623 | 0062 | 00621 | 00624 2 a6 1 omo | oo | oors
2 giﬁ g'iz g'g; g'ggi 5 03176 | 00340 | 00777 | 00719
7 00625 | 0062 | 00622 | 00625 s g'g;;z 8’(;"777: g’gzz; g'g:Z?
8 00625 | 000 | 006z | 00625 8 010342 0:3519 0:3518 010343
9 00625 | 00623 | 00623 | 00625
10 00625 | 00625 | 00625 | 00625
(Table 4y (f;)* under true value 5 preveweweso St
€
¢ | mBwLl | BwL | LME) | M <5
1 09978 | 09115 | 09978 | 09114 ST oot LOWER +_
2 | 0%I8 | 0918 | 09978 | 09114 g> 08 TROE
3 09018 | 0918 | 09918 | 09918 é; 002
4 09114 | 09978 | 09918 | 09918 @ 00t
5 09114 | 09978 | 09918 | 09918 0 it
6 09018 | 09918 | 09018 | 09918 123456789101 1213141516 1718 1920 21 22
7 09918 | 09918 | 09914 | 09978 Stages
8 0.9977 | 08638 | 08639 | 09977 [Figure 2] Variability propagation principle
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6. Concluding remarks

We have proposed a numeric model and al-
gorithm for the purpose of computing the first
two moments of the inter-departure process
subject to given service rate, demand rate and
number of cards in each cell, and proved the
existence of VPP in a pull serial line.

The necessary and sufficient conditions for
existence of VPP in a pull serial line with given
boundary conditions are represented as

V(4D;)
V(4D;) + V(4Cy)

fi > , Vie[l, m]
Via some experiments, we have confirmed the
validity and applicability of the proposed theories.
Through these works, some subordinate struc-
tural properties have been proved under the as-
sumptions of infinite supply of raw materials
and backlogged demands :

(1) The assumption of infinite supply of raw
material results in the same throughput in
each cell, which indicates that material flow
"in a pull serial line must be conserved.

(2) Besides, if backlogged demands are permit-
ted, then these assumptions are equivalent
to the statement that a pull serial line is
stable, that is, traffic intensities of each cell
must be smaller than 1. Also, the throughput
in each cell is identical to the external de-

mand rate.
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