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ABSTRACT

In this paper, we explore a new class of cutting planes by extending the concept of frac—
tional S~K(S—K) cuts. This class of cuts is derived by applying a suitable surrogate con—
straint analysis that incorporates a special multiplier adjustment method to the generalized
Gomory's fractional cut. We present computational results to provide insights into the
performance of these cuts in comparison with other well known classes of cuts.

1. INTRODUCTION

This paper deals with the class of fractional surrogate-knapsack(S-K) cuts, a
strengthened form of Gomory’s fractional cut {9]. Gomory proposed a fractional
cutting plane algorithm in the late fifties and early sixties, to solve integer prob-
lems via the solution of a sequence of linear programs. In this research, we inves-
tigate a method for generating a more effective class of fractional S-K cuts by ap-
plying surrogate knapsack analysis to derive a strengthened form of the general-
ized fractional cut of Gomory as proposed by Glover [7]. The latter generalized cut
is obtained by using a multiple, not necessarily integral, of an original equation
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before rounding down all coefficients and the right-hand side, and then subtract-
ing this cut from the source equation multiplied by a suitable integer. This gener-
alized fractional cut includes the standard Gomory’s fractional cut as a special
case, and also subsumes other types of fractional cuts. The proposed fractional S-
K cut extends this generalized fractional cut by applying the surrogate constraint
analysis of Glover, Sherali, and Lee [8] to obtain a stronger cut. (Glover, Sherali
and Lee [8] presented a new surrogate-constraint analysis, giving rise to a family
of strong valid inequalities called surrogate-knapsack (S-K) cuts.) They presented
an analytical procedure to provide a strong S-K cut subject to constraining the
values of selected cut coefficients, including the right-hand side of the cut. A poly-
nomial-time separation procedure was developed to generate an S-K cut, and the
authors demonstrated that the approach can recover facets which are not avail-
able using standard lifting methods. Additionally, they proposed a strengthened
form of the fractional S-K cut.

It is well known that all valid inequalities can be obtained as Chvatal-
Gomory inequalities (C-G inequalities) for integer programming problems, per-
haps via a repeated application of the Chvatal-Gomory process [10]. Dietrich and
Escudero [6] showed that clique and cover inequalities implied from 0-1 knapsack
constraints can be obtained as rank-one C-G inequalities. They also showed that
0-1 knapsack constraints obtained by the ‘big M’ reduction procedure can also be
generated as rank-one C-G inequalities. In addition, they showed how some ex-
tended coefficient reduction based LP-tighter and 0-1- equivalent constraints can
be generated as Gomory’s fractional cuts.

The original Gomory’s fractional cut still performs as well as, or better than,
other types of fractional cuts. For example, the combined cut performs worse than
the Gomory’s fractional cut for several problem instances in the experiments in
Ceria, Cornuejols and Dawande [4]. In this paper, we implement the fractional S-
K cut to compare its performance with other fractional cuts. Our cut generation
process first determines a set of optimal multipliers for deriving the generalized
fractional cut of Glover {7] which yields a maximum violation with respect to a
given LP relaxation solution. Following this, we implicitly determine the surro-
gate-multipliers for the surrogate-knapsack cut to generate a further strength-
ened cut in case a specified condition holds true. A result given in Glover, Sherali
and Lee [8] facilitates this derivation without explicitly having to determine the
surrogate multipliers, relying just on the knowledge of their existence.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the fractional S-K cut generation scheme, based on the generalized fraction-
al cut and the fractional S-K cut. Section 3 provides some insights into selecting
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appropriate multipliers for deriving deep cuts based on defined criteria. Finally,
Section 4 presents computational results.

2. FRACTIONAL S-K CUTS

In this section, we introduce the class of fractional S-K cuts as a strengthened
form of the generalized fractional cut of Glover [7]. Assume that the current LP
tableau contains the equation

y+ D a;x;=ap, 1)

JjeN,
where y is a basic variable, and x ; for j e Ny, are the current nonbasic variables.
Suppose that all these variables are restricted to be integers, and in particular,
let N, c N, represent the index set of binary-restricted nonbasic variables. We
also suppose that g, is not integral, as must occur if the LP extreme point is not

integer feasible.
Based on the constraint (1), we may derive an extended form of the fractional
cut, named as the generalized cut (GC):

s+ Y (paj—l-haj-l)xj=pa0—|_ha0-|, (2

JjenN,
where s is a nonnegative integer variable, p is an integer parameter such that
pa, is non-integer, and [-]is the rounded-up integer. Also, note that A is a
parameter chosen to satisfy two conditions : p—-1<h<p, and h > (I_ pa0-|—1)/ ag-
The former condition assures that p = l_h.l which contributes toward eliminating
that the basic variable y from (2), and along with the latter condition, it assures

that the right-hand side of (2) is negative so that (2) eliminates the current LP
fractional vertex. Note that for & = p, Equation (2) yields the customary Gomory’s
scaled fractional cut (GFC):

s+ Y (-fix;)=—fy, 3
JjeN,

where fj=‘—haj-, - ha; for je Nyu{0}.

Now, we introduce the derivation of the proposed fractional S-K cut. First, let
us multiply the source equation (1) by the parameter % to yield a scaled source
equation
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hy+ Y ha;x; = hay. 4
jeN,

Noting that x; <1 for all je N, ;,, let us surrogate the above constraint along
with the inequalities —u;x; >-u; for je N,, where u; 20 for all je N, , to ob-
tain the constraint

hy+ Y (ha; ~u;) x; 2 hag -u,, )
Jjen,

where u; =0 for je Ny~ N, for convenience, and where Ug = Zuj . From this
JjeN,
constraint, the Chvatal-Gomory procedure [10] yields the following cut.

|—h-|y+ Z [haj—uj-]xj Zl—hao—uo-|, 6)
JjeN,
or
—I—h-ly - [haj*uj-ixj s—l— hao—uo_] @)
jeN,

Now, multiplying the source equation (1) by an integer p, we get

py+ Y. pajx;=pag. (8)
JeN,

Selecting h and p such that p = ]—h-, , we get upon adding (8) to (7)

> (paj—|—haj—~uj~|)xjSpao—l-hao—uo-|=0. 9)
jeN,

Let us refer to (9) as the fractional S-K cut. This can be rewritten as

s+ 2 (paj—,-haj—uj-bxj = pag - hay 1], (10)
jeN,

where we can restrict the slack s to be a nonnegative integer variable, since the
slack in (7) is integer-valued. The fractional surrogate cut (9) can be made strictly

stronger than GC given by (2), if we choose u; suitably to yield |_haj —uj-l<

l-haj] for some nonempty subset N, of N,, selecting u ;=0 for all je N, - N,
while keeping the right-hand side of the two cuts the same, that is, 1_ hay —u0-| =

|_ha0-|. The following result identifies such a strengthened cut under a suitable
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condition which accomplishes the foregoing tightening idea. For convenience, we
write the generalized cut (GC) given by (2) in the following form

- ) 8;x;<-g, (11
jeN,
where ]_haj—| for je Nyu {0}.
Then, in Theorem 2 of [8], we have the strengthened cut. Define r; = 1—(l_ha j—l

—ha;) for je NyuU {0}, and let N, be any subset of N;, such that .Z]:V'rj <1y
JELV,

Then, provided N b is nonempty, a fractional S-K cut that strictly dominates GC
given by (11) can be derived to yield the following :

Z"(]-_gj)xj_ Z 8j%j<—8o - (12)
JjeN, jeN,-N,

Example 2.1. Suppose that the current LP tableau contains the equation

y+£x + Ex + Zx -2
g 1 8 g g
where v is a basic integer variable, and assume that all the x variables are 0-1
variables. Let us choose p=h =1, so that (2) is a standard Gomory’s fractional
cut (3). This fractional cut is given as follows :
— — Xy — i Xo — }_ X < — i
g8 8% 8% g

Then we have from Theorem 2 of ([7]) that

| on

1r()

3 5 7
r1=§, Ty g, r3=§ 8

To ensure the condition Y. r; < 15, we can select N »= {1}. This gives the
jeN;

fractional S-K cut (12) in the form

_x_éx__]_'_x<_
g1 g2 g~

| w

This cut strictly dominates the original fractional cut derived above. [0
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3. SELECTION OF MULTIPLIERS FOR CUT GENERATION

In this section, we explore some strategies for selecting appropriate multipliers
for generating Gomory’s fractional cuts (GFC), generalized cut (GC), and fraction-
al S-K cut, as given by Equations (3), (2), and (9), respectively. The strength of a
cut can be evaluated by several measures. The Euclidean distance from a cut gen-
erated to the fractional point might be the most meaningful measure, but several
other criteria based on rectilinear or [, measures, or based on minimizing the

violation subject to some scaling of the cut coefficients are viable options (See
Sherali and Shetty [11], or Balas, Ceria and Cornuejols [1, 2]). We focus here, in
concept, on this last criterion.

The strongest Gomory’s fractional cut (3) that maximize the violation with
respect to the current solution, given the fractional value form of the cut coeffi-
cients, can be readily obtained by solving problem (13) below which maximizes
the value of f

Maximize I_hao-|—ha0 with & integer . (13)

Proposition 3.1. Let ay =e/D, where ec Z, De Z, and ¢ and D are relatively
prime and there are integers i and g satisfying he=qD +1.
Then the problem (13) has an optimal objective value (D -1)/D.

Proof. Since e and D are relatively prime, ged (e, D) = 1, where ged (x, y) is the
greatest common divisor of x and y . By using the Euclidean algorithm to
find ged (e, D), we can readily find integers h and q satisfying he —gD =
ged (e, D)= 1. Then, we have that [ ha, |- ha, =[ he/D l-he/D=(g+1)-
(g+1/D)=(D-1)/D. [

The generalized cut (2) requires the condition p-1<h < p and ha, > [_ pa0-|
~1. This implies that |_ hay | = [ pag |, and so, the maximum violation in (2) with

respect to the current solution is obtained by solving the following problem:
Maximize l— pao_l— pag with p integer. (14)

The optimal objective value of (14) is the same as that for (13) leading to a cut
(2) having the same right-hand side as that for (3) based on this criterion. How-
ever, in this case, since h e (p-1, p], we can obtain cuts having different coeffi-

cients depending on the choice of h , although for the situation in which a ;20

for all j e Ny, it would be best to select & = p to obtain a deepest cut.
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Example 3.1. Suppose that the current LP tableau contains the equation

H

y+ix1 +Ex2 +Zx3=—

45 8 8 8

where y is a basic integer variable, and assume that all the x variables are 0-1
variables. Let us find p and A by solving (13). Since ¢, =5/8=e/D, we have
that h =5 and q =3 satisfying he =qD +1. Hence the optimal solution of (13) is
(D-1)/D=7/8. Then the strengthened Gomory’s fractional cut (3) is given as

follows :

9 8% 8" &

Then we have from Theorem 2 of ([7]) that

rl =l, 7‘2=l, r3 =‘3—, 7‘0——.
9 8 8

To ensure the condition )’ r; <r, of Theorem 2 of ([7]), we can select N, p =
jeN,

{1} . This gives the fractional S-K cut (12) in the form

lx_lx_éx <__7.
9 1 g g~ g

This cut strictly dominates the strengthened fractional cut derived above. [J
Now let us consider the generation of deep fractional S-K cuts by optimizing

the value of p and A in (9), in the spirit of Theorem 2 of ([7]). Theorem 2 of ([7])
is aimed at enhancing the coefficients in (9) while keeping the right-hand side the
same as that of the generalized cut in (2).

Suppose that we select p via (13), and we let A = p to make hq, as large as
possible, subject to the restrictions on » . This provides an initial cut (2) (or (11)).
For this cut, u, must have a value satisfying 0 <uy <hay - ([ hay |-1) , which
by (13), yields 0< uy < 1/D . Accordingly, by examining the values of r; for all
je N, U {0} as in Theorem 2 of ([7]), we can attempt to strengthen the foregoing

cut to the revised form (12). Alternatively, we would apply the surrogate knap-
sack analysis before determining the multipliers of GC, or to devise a method to
determine all the multipliers simultaneously.
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4. COMPUTATIONAL EXPERIENCE

In this section, we report some computational results using a set of 0-1 integer
programming test problems taken from MIPLIB [3]. A summary of these test
problems is given in Table 4.1. This is a particularly interesting set of six prob-
lems from MIPLIB, noting for example that for the instances P0033 and P0201,
the combined cut of Ceria, Cornuejols and Dawande [4] performs worse than Go-
mory’s cut. In Table 4.1, Z;p represents the optimal objective function value of

the linear programming relaxation at the root node, and Z;, represents the op-

timal objective value of the integer program. Note that this test set also possesses
relatively weak LP relaxations.

Table 4.1. Test problems from MIPLIB [3]

Problem Constraints Variables Zp Zip
P0033 15 33 2,520.6 3,089.0
P0201 133 201 6,875.0 7,615.0
P0282 241 282 176,867.5 258,411.0
P0291 252 291 1,705.1 5,223.8
P0548 177 548 315.3 8,691.0
P2756 756 2,756 2,688.7 3,124.0

At each iteration in our implementation, we generated the particular class of
cuts being evaluated for all the rows for which the corresponding basic variables
had fractional values. No previously added cuts were deleted during the course of
the procedure. The linear programs encountered in this process were solved using
the CPLEX 6.2 callable library [5]. All runs were performed on a SUN OS 6.0
workstation, and reported times are CPU seconds on this machine.

First, we compared the performance of the original Gomory’s fractional cut
(GFC with h =1), the generalized cut (GC), and the fractional S-K cut, given re-
spectively by (3), (2) and (9). We obtained the parameter p for GC via (14) using
CPLEX 6.2 [5], and we set h = p. We restricted the range of p to 0< p<10 in
solving this problem to ensure a reasonable effort. The cutting plane schemes
FSKC-S1 and FSKC-S2 respectively represent the strategy of strengthening the
derived GFC and the GC cuts by applying Theorem 2 of ([7]). Table 4.2 summa-
rizes the results obtained. Here, Z,, denotes the final objective function value

obtained at the root (initial) node in each case. From this table, two observations
are discernable. First, by comparing FSKC-S1 with GFC, it is evident that Theo-
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rem 2 of ([7]) significantly improves the performance of GFC. This encourages a
further investigation of the effect of the S-K analysis on the quality of the cut. The
second observation comes from comparing GFC and GC with FSKC-S2. For all
the problems, except P0201, GFC performs better than the latter two cuts.
Moreover, for two test problems, FSKC-S2 produces a mix of cuts that improves
over that generated by GC itself. From these results, it is evident that the maxi-
mum violation criteria embodied by (14) is not particularly effective, and that by
its nature of squeezing the admissible range of u,, it does not provide a sufficient
opportunity for Preposition 2.1 to improve the quality of the resulting cut explora-

tion of alternative mechanisms for generating cuts based on other defined meas-
ures of cut quality.

Table 4.2. Comparison of Gomory, generalized Gomory, and surrogate—knapsack
enhanced cutting plane schemes

GFCwithh=1 GC FSKC-S1 FSKC-S2
Problem 7 Elapsed 7 Elapsed 7 Elapsed 7 Elapsed
root Time root Time root Time root Time
P0033 2,909.5 0.3 2,882.9 0.6 2,910.8 0.4 2,880.6 0.8

P0o201 6,925.0 11.0 6,925.0 14.9 6,948.4 10.4 6,948.4 10.5
P0o282 | 177,399.6 14.3 178,174.5 18.6 178,542.1 16.6 | 178,176.5 26.8
P0291 2,376.1 12.86 2,362.2 16.0 2,465.7 20.2 2,276.3 218
P0548 498.0 11.8 316.7 14.6 1,576.9 248 316.7 25.2
P2756 2,691.0 105.3 2,691.0 111.6 2,700.8  282.1 2,691.0 269.1

Next, we compared the fractional S-K cuts using the strategy FSKC-S1 with
some well-known surrogate-knapsack (S-K) cuts (see Glover, Sherali, and Lee [8])
and lifted cover (I.C) cuts (see Nemhauser and Wolsey [10]). Table 4.3, reports the
final objective values obtained at the root node in each case, along with the num-
ber of cuts generated. Note that FSKS-S1 sometimes performs as good as the
strategres of using S-K cuts and the LC cuts, although it requires more computa-
tional time and generates more cuts. However, these results indicate that Go-
mory’s fractional cuts when strengthened using surrogate multiplier techniques
as in Theorem 2 of [8] can yield quite a competitive performance. Furthermore,
noting the relative performance of the S-K cuts in Table 4.3, along with the fact
that this class of cuts is also derived through an appropriate scheme of selecting
surrogate multipliers and then applying the Chvatal-Gomory rounding step, we
are encouraged to recommend further research on deriving more effective proce-
dures for deriving surrogate multipliers within such a framework.
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Table 4.3. Comparison of surrogate—knapsack enhanced Gomory cuts with
surrogate—knapsack and lifted cover cuts
FSKC - S1 S - K Cuts LG - Cuts
Problem 7 Num. Elapsed 7 Num. Elapsed 7z Num. Elapsed

root Cuts  Time root Cuts Time root Cuts Time
P0033 2,910.8 48 0.4 2,902.6 15 0.1 2,916.2 13 0.2
P0201 6,9484 161 10.4 7,075.0 3 0.8 7,075.0 2 0.9
P0282 | 178,542.1 204 16.6 |252,356.0 89 2.5 | 180,999.7 58 0.2
P0291 2,465.7 248 20.2 5,009.2 28 1.0 1,873.8 25 0.3
P0548 1,576.9 184 24.8 3,883.7 158 8.1 4,052.9 138 2.5
P2756 2,700.8 126  282.1 2,701.8 75 16.4 2,701.7 68 10.5

5. CONCLUSIONS

In this paper, we have explored a new class of fractional S-K cuts and have com-
pared its performance with that of other cuts including Gomory’s fractional cut.
Our results reveal an advantage of applying the surrogate-knapsack analysis to
Gomory'’s fractional cut. However, we need to further investigate other multiplier
adjustment methods to obtain more dominant results. This effort includes finding
other measures for evaluating the quality of a cut. Ultimately, it is of interest to
study the added benefit of implementing fractional S-K cuts within a branch-and-

cut framework, in lieu of generating such cuts at the root node also.

Acknowledgment: This work is supported by the Korea University Grant, 2002.




FRACTIONAL SURROGATE-KNAPSACK CUTS FOR INTEGER PROGRAMS 31

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

17

(8]

[10]

(11]

Balas, E., S. Ceria, and G. Cornuejols, “A lift-and-project cutting plane al-
gorithm for mixed 0-1 programs,” Mathematical Programming 58 (1993)
295-324.

Balas, E., S. Ceria, and G. Cornuejols, “Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework,” Management Science 42 (1995)
1229-1246.

Bixby R. E,, E. A. Boyd, S. S. Dadmehr, and R. R. Indovina, The MIPLIB
mixed integer library, Technical Report R92-36, Rice University, 1992.
Ceria S., G. Cornuejols, and M. Dawande, “Combining and strengthening
Gomory cuts,” Proceedings of 4 International IPCO Conference, 1995, 438-
451.

CPLEX version 6.2, Using the CPLEX callable library, CPLEX Optimiza-
tion, Inc., 1998.

Dietrich B. L., and L. F. Escudero, “Obtaining clique, cover and coefficient
reduction inequalities as Chvatal-Gomory inequalities and Gomory frac-
tional cuts,” European Journal of Operational Research 73 (1994), 539-546.
Glover F., “Generalized cuts in Diophantine programming,” Management
Science 13 (1966), 254-268.

Glover F., H. D. Sherali, and Y. Lee, “Generating cuts from surrogate con-
straint analysis for zero-one and multiple choice programming,” Computa-
tional Optimization and Applications 8 (1997), 151-172.

Gomory R. E., “Outline of an algorithm for integer solutions to linear pro-
grams,” Operations Research 23 (1975), 434-451.

Nemhauser G. L., and L. A. Wolsey, Integer and combinatorial optimization.
John Wiley & Sons : New York, N.Y., 1988.

Sherali, H. D. and C. M. Shetty, “On the generation of deep disjunctive cut-
ting planes,” Naval Research Logistics Quarterly 27, 3 (1980), 453-475.



