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ABSTRACT

This paper presents a model that analyzes the impact of uncertainties in demand and
processing times on the production lead time of a Kanban system. We consider the waste
associated with under—production as well as over—production when we measure the pro—
duction lead time. We set up an optimization model to minimize the production lead time. A
simple heuristic procedure is developed to determine solutions in terms of the size of
containers and the number of Kanban cards. In addition, we numerically examine the be—
havior of the optimal Kanban system.

1. INTRODUCTION

According to a survey conducted by Miller and Roth [13] and the research work
reported in Blackburn [4], lead time has become an important strategic weapon
for a manufacturer to compete in the world market. In operations management
literature, a significant amount of research has been devoted to analyzing lead
time in manufacturing systems. Much of the research has been concentrated on
flow time within the scheduling context. In this context, the processing time of a
job on a machine is assumed to be known and fixed (see Lenstra et al. [12] for an
extensive review of scheduling problems). Other analytical research has focused
on cycle time and/or set-up time reduction [15, 19]. Others have considered the
problem of setting due-dates [6, 18]. Finally, a number of researchers have con-
sidered the relationship between lead times and other parameters in manufac-
turing systems [2, 3, 9, 10, 11, 16, 21].
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Traditional inventory models such as MRP and EOQ do not account for the
effects of uncertainties on lead time. In most stochastic models, the lead times are
assumed to be independent and identically distributed, which do not capture the
reality of the most manufacturing systems. Karmarkar [9] developed a model to
examine the relationship between lead time and batch size. However, in his
model, Karmarkar has ignored the effect of batch size on shortages and finished
goods inventories. In addition, no systematic inventory control mechanism such
as the time and the amount to release the order to the shop was established. Bi-
tran and Tirupati [3] further developed a more comprehensive model that inte-
grates the job release mechanism into Karmarkar’'s model. They considered the
lotsizing problem with stochastic demands and stochastic lead times under a con-
tinuous review policy of (R, ) type. They presented some characteristics of their
problem and suggested several ways to simplify and solve the problem. They also
examined the effect of various approximation schemes on different performance
measures.

This paper presents a model that analyzes the impact of uncertain demand
and uncertain processing time on total production lead time under a Kanban sys-
tem. The Kanban system is originally designed by Toyota Motor Co. to realize
just-in-time production. The competitive and strategic advantages associated with
the Kanban system are reducing the cost of inventories, increasing the plant ca-
pacity, cutting direct labor costs, improving quality, enhancing flexibility of the
production system, and shortening the lead time [7]. The reader is referred to
Berkley [1] for an extensive review of Kanban production control literature.

Another important aspect of our model is the way we treat the production
lead time. Traditionally, the queuing and processing time at a manufacturing
facility has been considered as a production lead time. As Ohno [14] pointed out,
not only the waiting time of items at the inventory buffer (waste of over-
production) but also the waiting time of orders from a succeeding operation
(waste of under-production) clearly ruin the efficiency of the system. These times
can be substantial and may consist of over 50% of total time in the system espe-
cially in a job shop environment. This point has been neglected in the literature,
and motivated us to develop a model in which the waste associated with under-
production as well as over-production is incorporated into total production lead
time. In order to compute that wastes, we conceptually divide the inventory buffer
into two types: in-and out-buffer before and after each manufacturing facility. The
detailed role of each buffer is explained as follows: when job is released to the
facility, it is sent to the in-buffer. If the facility is idle, then the job released to the
facility is immediately processed, otherwise it has to wait until the facility is
available. After being processed, the completed item is sent to the out-buffer. If
the demand is backordered at the out-buffer, then the item is immediately used to
fulfill the demand backordered, otherwise it has to wait at the out-buffer until the
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next demand arrives. Therefore, the in-buffer captures the traditional production
lead time such as queueing and processing time at the manufacturing facility,
and the out-buffer captures the times pointed out by Ohno such as the waiting
time at the inventory buffer and the waiting time of demand backordered.

By considering a Kanban control system, we develop expressions for meas-
uring the total production lead time. We establish a simple heuristic procedure to
determine solutions for the size of the containers and the number of Kanban
cards. In addition, the behavior of optimal Kanban system is investigated by
means of numerical experiments. The remainder of the paper is organized as fol-
lows: The model is presented in Section 2, and the characteristics of performance
measures and the searching procedure to determine the optimal policy is devel-
oped in Section 3. The results of computational experiments are discussed in Sec-
tion 4. Finally, we conclude the paper with some future extensions.

2. THE MODEL

As depicted in Figure 1, the system consists of a series of processors and two in-
ventory buffers - in-buffer and out-buffer - for each processor. We assume, in this
paper, that production and inventory is controlled by a Kanban system, and the
problem is to determine the size of the containers and the number of Kanban
cards for each operation so that the total production lead time is minimized.

K, K,
(—“DD"-D (—‘DD---D
AI\N MFl %—» IB:; MF2 —%]&_’ *ce e —p
Ql QZ
00 od-0
_,. .. &D .
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MF; : manufacturing facility i

RM : raw materials inventory (in-buffer of MF,)
IB;, :in-buffer of MF;

OB, : out-buffer of MF,

FG :finished goods inventory (out-buffer of MF,)
K, : number of Kanban cards at MF,

@, : batch size of MF,

Figure 1. Configuration of Serial Production System
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At each stage the completed items are stored in containers, each of which
holds exactly @; units. There are K; containers at stage i, and there is a Kanban

card attached to each container. The Kanban system operates in the following
way: Whenever @; units are depleted from a container in the ship-buffer i, the

corresponding Kanban card is transmitted to the in-buffer i, where it withdraws
raw materials from the preceding operation (out-buffer i-1). The Kanban cards
also serve as new production orders that trigger the processor to begin its produc-
tion process. In general, the processor uses a first-come-first-serve discipline to
process these orders. Once the processor i produces @; units, the completed units

and the Kanban card which ordered the full container are sent to the out-buffer i.
In the event when the succeeding operation (stage i +1) places an order and there
is no completed items available in the ship-buffer i, this order should wait until
the completed items become available. In our model, we assume that the set-up
time is incurred when the processors begin their production for each (container) of
their orders. One can think of processor as an oven, a chemical tank, or a dyeing
machine.

There are four important observations regarding the Kanban system de-
scribed above. First, the number of Kanban cards circulating at stage i is K; at

any point in time. Hence, the maximum inventory level in out-buffer i is equal to
K; Q; . Second, a Kanban card is sent to in-buffer ¢ (an order is released) whenev-

er a full container (@; units) is depleted at the out-buffer i. Therefore, the number
of Kanban cards, K;, and the container size, @), , dictate the arrival process of the
Kanban cards at the in-buffer. Third, the container size (or batch size), Q; , affects

the intensity of stage i. Smaller batches cause the workload on the processor to
increase due to increased number of set-ups. As batches become large, the inten-
sity of the stage decreases and the effect of set-up times diminishes. Finally, the
number of Kanban cards, K;, affects the inventory level and the number of back-

orders at the out-buffer i. For instance, as the number of Kanban cards increases,
the expected inventory increases while the expected number of backorders de-
creases.

This operating characteristics of the system can be analyzed by a serial
queuing system. However, it is difficult to analyze the system exactly. In order to
make the model tractable, we assume that the system can be decomposed into
independent queuing systems, each of which has a single processor and two buf-
fers before and after the processor [20]. As an initial study of this decomposition
scheme, we shall restrict our analysis to a single stage queuing system.

Consider a single-stage system as shown in Figure 2. In this system, we can
convert the units of goods in terms of number of containers (or number of Kanban
cards). Thus, at any given point in time, the state of the system can be specified
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by (1) the number of Kanban cards waiting at the in-buffer be processed and the
number of Kanban cards being processed at the processor ; (2) the number of
Kanban cards in the out-buffer ; and (3) the number of backorders. Let , T} be the

lead time that consists of the average time that a Kanban card waits to be proc-
essed at the in-buffer and the average processing time, T, be the average time

that a Kanban card waits at the out-buffer, and T3 denote the average time that

an order from the succeeding operation waits for completed items.

Order released by a
Kanban card K,

Material supplied from f Order from next
previous stage ——® MF, —» DO stage

l¢ »l & \' < )I
If T Ll Y T, rl T,

T, : queuing time at the in-buffer and processing time

T,: waiting time at the out-buffer
Ts: waiting time of the order from the next stage

Figure 2. Schematic Representation of Production Lead Time for
a Decomposed Single Facility

In order to determine an efficient Kanban system (specified by K, the number
of Kanban cards, and @, the size of the container) that minimizes total production
lead time, we formulate the following mathematical program:

We make the following assumptions for the analysis:

¢ The arrival process of each unit demand (order from the succeeding operation)
is a Poisson process. In our model, a Kanban card is transmitted to the in-
buffer after every @ units are depleted from a container in the out-buffer. Thus,
the interarrival times of the Kanban cards at the in-buffer have an Erlang dis-
tribution of order @.

e All unmet demands are backlogged.

e The sum of the time needed to produce @ units (a batch) and the set-up time is
exponentially distributed. While it is difficult to justify use of an exponential
distribution for production time, this assumption is made to keep the model
tractable [3, 9]. However, if both the set-up time and the processing time are
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highly uncertain, this assumption can be considered to be reasonable. Exponen-
tial production times seem to be reasonable for modeling semiconductor manu-
facturing processes [5].

We now turn our attention to developing the expressions for 7}, T, and 7.

To do so, let us define

: demand rate of the product (induced from next facility)
: batch size

: number of Kanban cards

: arrival rate of batches at the machine=D/ @

: set-up time for a batch

: unit production rate of machine

: production time per batch= ¢ + (@ / P)

: processing rate at the machine =1/% = P/(Pr + @)

: expected on-hand inventory

W~ RERT Y NOU

: expected number of backorders

Since the Kanban card that triggers production arrives the in-buffer after @
jobs have been depleted at the out-buffer, the job inter-arrival times to the facility
have an Erlang distribution of order € and mean @/ D. The number of job at the
machine is bounded by K. Therefore 7 requires computation of steady state

probabilities of an Eg/M/1/K system. In evaluating this measure, the job arri-

vals to the shop are approximated by a Poisson process with the parameter D/@Q.
Using this approximation, 7} is determined by M/M/1/K system that can be ex-

pressed as [17]:

_ 1+ K(D7/Q+DIPYX? (K +1) (Dt/Q+DI/PYX) (z + Q/ P)

T
(1-Dz/Q-D/P)(1-(Dz/Q+D/P) )

@)

The on-hand inventory and the number of backorders at the out-buffer can be
described by a continuous time Markov chain (Figure 3). The state i corresponds
to the case when the number of Kanban cards in the inventory buffer is i. Let Py,
be the limiting probability that a system will be in state K-n. The standard re-

sults from probability models give [17]
Py, =(D/P+Dr/@"QA-D/P-D7/@Q) (3)

When the system is in state K—n, the probability that inventory position is x is
1/Q, for (K—n-1)Q < x < (K-n)Q. The expected on-hand inventory at the out-buffer
is given by
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DIQ b/Q D/Q  Dp/qQ
m m m m
D/@Q : inventory depletion rate from succeeding facility

p  :arrival rate of Kanban cards to inventory buffer

Figure 3. State Transition Diagram of Kanban Cards

K-1

I=Y(K-n)Q+Q/2) Py, @

n=0

The average waiting time of a job at the out-buffer is determined by dividing the
expected on-hand inventory by demand rate as follows:

T - T/D——Q K_—_l__(D‘L' /1Q+DIP)1-0.5(Dt/Q+ D/ PY¥)-0.5(D1/Q+D/ P~k
2 D 2 (1-D</Q-DIP)
6)
The expected number of backorders is given by
B=Y(n-K)Q+Q/2)Px_, (6)

i
=

n

The average time that an order from the succeeding operation waits for completed
items is determined by dividing the expected backorders by demand rate as fol-
lows:

QD /Q+D/IPX1+D1/Q+DI/P)

T,=B/D=
2D(1-Dt/Q - D/P)

O

Using Poisson approximation scheme, the problem is finally formulated as fol-
lows:

st. KeI® ©)
Q= Dt /(1-D/P) (10)

where, T}, T, and T, are as in equations (2), (5) and (7) respectively. Since we
must have system intensity, p =A/u <1, the batch size, Q, is bounded below by
Dt /(1 - D/ P) which is shown in constraint (11).
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3. CHARACTERISTICS OF OBJECTIVE FUNCTION AND SEARCHING
PROCEDURE

To determine optimal values of € and K so that the total production lead time, T,
is minimized, we develop a search procedure. As shown in equations (2), (5) and
(7), the total production lead time, T, is a very complicated function of @ and K. It
is difficult to get a mathematically-nice and completely-proven properties for 7. In
order to develop alternative solution approaches, we analyze the characteristics of
Ty, T,, and T, that are summarized in the following lemma and conjectures.

Lemma 1. For a given batch size @,
1. 7 is concave and monotonically increasing in K.

2. T, is convex and monotonically increasing in K.

3. T; 1is convex and monotonically decreasing in K.

Proof: The proof directly from the following properties:
8Ty 13K >0,0T, / 0K > 0,8Ty | 0K < 0,8°T, /1 0K? < 0,0°T, / 6K* > 0,and 62T, /6K ? < 0.

The results of Lemma 1 are fairly intuitive. As the number of Kanban cards
(K) increases, more jobs are triggered to the manufacturing facility, which in turn
increases the queuing and processing time at the in-buffer (7}). However, since

the number of jobs triggered to the facility is constrained by not only the number
of Kanban cards but also demand rate, further increase in K may not have signifi-
cant effect on 7} when K is sufficiently large. Finally 7) converges to the case of

incapacitated queuing system, M/M/1/w as follows:

I%imTl=(r+Q/P)/(1—Dr/Q—D/P)=1/(/1—/1) (11)

In addition, increasing the number of Kanban cards causes the expected on-hand
inventory at the out-buffer () to increase, which results in increase of the wait-

ing time at the out-buffer (7). On the other hand, increasing the number of

Kanban cards causes the expected number of backorders to decrease, which re-
sults in decrease of the time for the next facility to wait (75 ).

Conjecture 1. For a given @), T is a bowl-shaped unimodal function in K and has
unique minimum point K * such that T(K") < T(K),V K.

It follows from Lemma 1 that T is the sum of monotonically increasing and
monotonically decreasing function. This observation leads us to conjecture that 7'
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is a unimodal function. For a given Q, the second derivative of T with respect to K
is given by

o*T _ Qaflna
K* Dl-a)1-af)?

(— 2a(l- a)( 1-a¥ )+ a+ a)(l - aK)slna - Ka(l- a)(l —-af )ln a)

(12)
where, a=D/P+ Dt/Q. For a large K, a¥ is close to 0 since 0 <a < 1, and 1- a*
and 1+ a® can be approximated to 1. Using these approximation, we can see that

>0 if K<K’
=0 fK=K' (13)
<0 otherwise

o°T
oK*?

where, K/ = ((1 +a)lna-2a(l- a)) /(a(l -a)ln a) . Therefore, T is convex-concave

function in K for a given @. In addition, following property also holds:

.o @
lim 22 _ ¢ 14
Kljl))(;o K- D >0 (14)

The conditions of equations (13) and (14) give that T is a bowl-shaped unimodal
function in K for a given Q.

Conjecture 2. For a given K, T is a bowl-shaped unimodal function in @ and has
unique minimum point @ " such that T(Q ") < T(®), V Q.

Let us consider 7} and T35 simultaneously. Notice that the number of jobs in

manufacturing facility is bounded by the number of Kanban cards. If the number
of Kanban cards is fairly large, no demand from the next facility is waiting at the
out-buffer, which makes T; virtually zero. As we decrease the number of Kanban

cards, some of the queuing time (7] ) at the in-buffer may be shifted to the wait-
ing time of demand from next facility (73). Therefore, the sum of 7} and T; can
be approximated by the total queuing and processing time of M/M/l/wo system,
which has been shown to be convex in @, as discussed in Karmarkar [9]. On the

other hand, Kanban system with K Kanban cards can be viewed as a special case
of the (R, ) policy, where R = (K-1)Q. Hence, the average inventories can be de-

composed approximately into cycle stock and safety stock. Therefore, T, can be

reduced to a linear function in  as follows:

I =cycle stock + safety stock = Q/2 + (K 1) @ (15)

Finally, we conjecture that T is a sum of convex (7] and T3) and linear(T;,) func-
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tion in @, which implies that T is a bowl-shaped unimodal function in @ for a
given K.

Conjecture 3. Let Q" (K) be an optimal batch size for a given K. Then @ (K) is
decreasing in K.

As discussed in Bitran and Tirupati [3], the total production lead time using
M/M/1 queue and the standard inventory approximation under a continuous re-
view policy of (R, &) type can be formulated as follows:

Qo 2B@Q.R) 1 Q+1 p
’= 571 G 16
Da-p b D2 T14p (16)
where,
_ QN E+2
B(Q, R) = expected number of backorders = Sﬂz—
Q- p)

p =intensity of the system = D/P + Dz/Q

R =reorder point

Suppose we differentiate T with respect to R. The first order optimality condition
can be expressed as:

R'+2 _ —(1_,0)2Q

- 17
2(np)1-p%) an

e

Since left hand side of equation (17) is decreasing in R” and right hand side is
increasing in @, optimal reorder point level for a given @, R'(Q), is decreasing in
Q. It is pot uncommon to conjecture that the reverse relationship is also true;
@ (K) is decreasing in K.

Based on above conjectures, we develop a simple searching procedure to de-
termine optimal batch size (@ ") and optimal number of Kanban cards (K ). Fur-
thermore, Conjecture 3 allows us to calculate maximum batch size, which occurs
at K=1. T}, T, and T; evaluated at K= 1 are as follows:

T g =7+Q/P (18)

5 QA-D/P-Dz/®)
Toga = 2D (19)
T3,K=1 _ QDIP+Dr/@)1+D/P+Dc/Q) 20)

2DQ-D/P-Dz/@)

First order condition for equations (18), (19) and (20) gives
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Dt 2
— 21
max 1—D/P(1+\/1+D/P] 1)

As D/P approaches to 1, which represents very high traffic density, Q... ap-
proaches 2 @, where @, is derived from the condition that p=A4/u <1 (Equa-

tion 10).

Since we have upper and lower bound for @ and T is a bowl-shaped unimodal
function in @ for a given K, @ “(K) can be easily determined by a binary search. In
addition, since T is also unimodal in K for a given @, K (@) can be easily deter-
mined by a usual numerical approximation. Finally, the solution can be deter-

mined by the following iterative procedure, which is called the Iterative Searching
Heuristic ISH):

Step 0. Find @, and Q... Let @"(K) = Q oy

Step 1. Let @ = @ (K). Starting from K = 1, increase K by 1 until find K(Q).

Step 2. Let K=K (). Find Q"(K) by using binary search for (@ ., @max)-

Step 3. If @ (K) and K (@) remain same, then stop, @ = @' (K), and K" = K'(Q).
Otherwise go to Step 1.

In ISH, conjecture 2 is not necessarily needed. Without this conjecture, we need a
complete search between lower and upper bound, which increases the number of
steps in computation.

4. COMPUTATIONAL EXPERIMENTS AND SIMULATION

The objective of the computational experiments is two-fold. The first is to verify
conjectures made earlier and the second is to investigate the behavior of optimal
solution and its relationship to other parameters. In addition, simulation is used
to examine the accuracy of Poisson approximation scheme used in Section 2.

In our computational experiments, we design different type of problems by
varying the ratio of demand rate to processing rate (D/P) and the ratio of set-up
time to processing time (zP). 19 different cases are generated by varying D/P

from 0.05 to 0.95 incremented by 0.05, and 29 different cases are generated by
varying P from 0 to 20 incremented by 1 and from 30 to 100 incremented by 10.
Total 551 (19 times 29) cases are generated and analyzed for computational ex-
periments. Among these, 9 cases are selected for simulation as follows: D/P = 0.4,
0.6 and 0.8 which represent low, medium and high traffic density respectively,
and P =1, 5 and 10 which represent short, medium and long set-up time respec-
tively.
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In all 551 cases of computational experiments, all three conjectures discussed
in Section 3 are valid. Examples of computational experiments for Conjectures 1,
2, and 3 are illustrated in Figures 4, 5, and 6, respectively. As shown in the fig-
ures, numerical experiments clearly verify all three conjectures. Figure 6 also
shows the results of simulation, which generally support Conjecture 3. However,
when the traffic intensity of the system is high (D/P = 0.8, SIM), the relationship
between the optimal batch size and the number of Kanban cards is not clear. It is
suggested to do more or longer simulation runs to get more stable results.

20
g 15 -
E
ke]
[
et
c —=-D/P=04
'% 10 4 —5-DIP =06
3 ——-D/P =08
Q
o
=
e 5

0 , . r . .

0 5 10 15 20 25 30
Batch Size
Figure 4. Total Production Time vs. Batch Size (when K=1, /7= 1)
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Figure 5. Total Production Time vs. Number of Kanban Cards (Q= @", i/P= 1)
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Figure 6. Optimal Batch Size vs. Number of Kanban Cards (when 1P = 10)

Table 1 compares the production lead time calculations of ISH and simula-
tion for 9 cases. It is apparent from the table that use of Poisson approximation
underestimates the queuing and processing time at the in-buffer of manufactur-
ing facility (7;), and seriously overestimates the waiting time of demand (T%)

especially for the case of high utilization rate (D/P).

Table 1. Lead Time Calculations by Heuristic and Simulation

T Te Ts T

DI/P TP ISH* SIM® ISH SIM ISH SIM ISH SIM

0.4 1 0.300 0.300 0.100 0.137 0.600 0.401 1.000 0.838
0.4 5 1.300 1.301 0.350 0.308 3.604 1.917 4.714 3.526
0.4 10 2.500 2.498 0.625 0.503 6.250 3.887 9.375 6.888
0.6 1 0.500 0.501 0.083 0.085 1.750 1.150 2.233 1.736
0.6 5 2.899 3.306 0.950 1.090 7.200 3.367 11.039 7.763
0.6 10 5.914 6.660 2.023 2.315 14.133 6.079 22.070 15.054
0.8 1 1.737 2.272 0.426 0.554 6.926 3.438 9.089 6.264
0.8 5 8.869 10.967 2.231 3.254 34.323 13.427 45,423  27.648
0.8 10 17.738 21.769 4.462 6.551 68.646 23.379 90.846 51.699

Note: a: Results of iterative searching heuristic
b: Results of simulation using @ " and K * determined by ISH
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Table 2 shows the comparison of solutions determined by ISH with those de-
termined by simulation. In most cases, the differences of the solutions for both
batch size and the number of Kanban cards between the two methods fall within
+1 except the case of high traffic density (D/P = 0.8) and long set-up time (P =
10). It is also observed that Poisson approximation tends to overestimate both the
optimal batch size and the optimal number of Kanban cards, but more extensive
experiments should be performed before any firm conclusion is drawn for this
observation.

Table 2. Optimal Solutions by Heuristic and Simulation

o K" 7
D/P P ISH SIM D* ISH SIM D ISH® SIM Error’
0.4 1 2 2 0 1 1 0 0.839 0.839 0

0.4 5 8 7 1 1 1 0 3.525  3.481 1.26
0.4 10 15 14 1 1 1 0 6.888  6.779 1.61
0.6 1 4 3 1 1 1 0 1.735  1.658 4.64
0.6 5 15 16 -1 2 1 1 7.763  7.502 3.48
0.6 10 31 30 1 2 1 1 15.055 14.682 2.54
0.8 1 8 8 0 3 2 1 6.264 5564 12.58
0.8 5 41 42 -1 3 2 1 27.648 23.933 15.52
0.8 10 82 74 8 3 2 1 51.699 49.429 4.59

Note: a:D=ISH - SIM
b: Simulated results using @ “ and K * determined by ISH
c: Error (%) = (T" of ISH- T of SIM) T~ of SIM

Now, we discuss about the behavior of optimal solutions and their relation-
ship with other parameters. Figure 4 shows the behavior of total production lead
time with batch size analyzed by ISH. As shown in figure, total production lead
time has a sharp minimum, and is sensitive to the choice of batch size. This result
is quite different from conventional EOQ type analysis, which supports the ro-
bustness of batch size decision. Figure 5 represents the same kind of behavior
with the number of Kanban cards in the system. This observation is somewhat
different from previous one. Total production lead time has a flat minimum, and
is relatively insensitive to the choice of number of Kanban cards. It can be con-
cluded from above observations that we have to be more careful to determine
batch size rather than to choose the number of Kanban cards in the system,

Figures 7 and 8 illustrate the relationship of optimal batch size (@ ) with
traffic density and set-up time ratio respectively. It is distinct that @ occurs near
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Qmax in most of the cases. Although it is difficult to get a closed form solution for
@ , we can get an approximate form as follows based on above observations:

* DT 2
~O = 1 / 29
9~ Quax l—D/P( N 1+D/PJ 22)
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@ —a— Qmin
§ i Qr
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Figure 7. Optimal Batch Size (@), @, and @, vs. Traffic Intensity (when rP = 5)
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Figure 8. Optimal Batch Size (Q), Q.. and @, vs. Set—up Time Ratio (when O/P = 0.6)
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Notice that @ has approximately a linear relationship with the set-up time as
shown in equation (22). This observation is also supported by experiments and
simulation. In addition, T " shows a similar pattern (Figures 9 and 10). These
results imply that if we reduce set-up time by a certain rate, we can get a reduc-
tion in batch size and total production lead time by same rate. As an example,
10% reduction in set-up time would results in 10% reduction in batch size and
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Figure 9. Total Production Lead Time vs. Traffic Intensity
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Figure 10. Total Production Lead Time vs. Set—up Time Ratio
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total production lead time. It can be also seen that the optimal batch size rises
with the traffic density, and is become more sensitive at higher traffic density
levels.

Figures 11 and 12 show the relationship of optimal number of Kanban cards
(K") with different parameters; traffic density and set-up time ratio. It is ob-
served that K" is virtually independent with set-up time ratio, which can be ex-
plained by the following reason. In our system, optimal number of Kanban cards
is strongly influenced by the waiting time of demand (73), which corresponds to

the case of reorder point level in (R, @) policy. The expected number of backor-
ders which is analogous to 7T; in our system, does not depend on batch size, but

only depends on reorder point level in a continuous review system of (R, @) type
[8]. The effect of set-up time changes on system intensity (p) can be absorbed by
appropriate changes in batch size, since the increase (decrease) in set-up time can
be compensated by increase (decrease) in batch size, which makes p remain con-
stant (p = D/P+Dt/@Q). Thus, Ty can hardly influenced by set-up time changes

except the case of very high traffic density.

As shown in Figure 11, optimal number of Kanban cards can be divided into
three regions according to traffic density ; first, only one Kanban card is needed
for low level of traffic density (D/P < 0.6), second, two or three Kanban cards are
enough for medium level (0.6 < D/P < 0.8), and finally more than three Kanban
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Figure 11. Optimal Number of Kanban Cards vs. Traffic Intensity
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Figure 12. Optimal Number of Kanban Cards vs. Set—up Time Ratio

cards are needed for high level (D/P > 0.8). Since more Kanban cards make the
system more difficult to control and total production lead time is somewhat insen-
sitive to the number of Kanban cards as discussed earlier, it can be implied that
at most three Kanban cards are enough for high level of traffic density.

In summary, we suggest, for practical application, simple rules of Kanban
control system as follows:

Rule 1. Operate the system with a batch size defined by @,,,.

Rule 2. If traffic density is low, just use one Kanban card. As traffic density in-
creases, add one Kanban card at a time. However, there is no need to
consider more than 3 Kanban cards.

Rule 3. Use linear relationship between set-up time and total production lead
time to evaluate the value of set-up time reduction.

5. CONCLUSIONS

In this paper, we have developed a model which incorporates production and in-
ventory control policy simultaneously. By considering a Kanban control system,
expressions were developed for measuring total production lead time. Poisson
approximation scheme was used for Erlang distribution. In addition, a heuristic
(iterative searching heuristic) was established to determine a solution (batch size



MINIMIZING PRODUCTION LEAD TIME OF KANBAN SYSTEM IN A STOCHATIC ENVIRONMENT 19

and the number of Kanban cards) which minimizes total production lead time.
Although total production lead times determined by this heuristic differ substan-
tially from the results analyzed by simulation, it appears that approximation
scheme and searching procedures developed in this paper may provide reasonably
good solutions. The behavior of optimal solutions and their relationship with oth-
er parameters were examined through extensive computational experiments.
While the total production lead time has a sharp minimum and is sensitive to the
choice of batch size (Figure 4), it has a somewhat flat minimum and is relatively
insensitive to the choice of the number of Kanban cards (Figure 5). Finally, we
recommended some simple rules for practical application of Kanban system.

Even after we decomposed a series of manufacturing facilities into indepen-
dent single facility, it was still intractable if we use the direct computational
methods. In order to analyze the inter-related effect of preceding and succeeding
facilities, it is needed to suggest reasonable simplification and/or useful qualita-
tive properties. This model can be viewed as a starting point of decomposition
scheme that has a potential to be extended to more complex situations such as
multi-item, multi-facility system.
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