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A Weak Convergence for a Linear Process with
Positive Dependent Sequences!

Tae-Sung Kim!, Dae-Hee Ryu? and Il-Hyun Lee!

ABSTRACT

A weak convergence is obtained for a linear process of the form X; =
Z;’;O aje—j, where {e} is a strictly stationary sequence of associated ran-
dom variables with E¢; = 0 and Ee? < oo and {a;} is a sequence of real
numbers with 772 |a;| < co. We also apply this idea to the case of linearly
positive quadrant dependent sequence.
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1. Introduction

Consider a linear process of the form
[e 0]

.Xt - Z Aj€t—j (11)
Jj=0

defined on a probability space (2, F,P), where {¢} is a strictly stationary se-
quence of random variables with Fe, = 0 and Ee} < oo and {a;} is a sequence of
real numbers with 3272 la;| < co. The linear processes have found in time-series
analysis and they arise in a wide variety of contexts (see e.g. Hannan, 1970).
Many important time-series models, such as ARMA process (see e.g. Brockwell
and Davis, 1987), have the form (1.1) with 3722 ]a;| < co.
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A finite collection of random variables {¢1,..., €} is said to be associated if

Cov{f(e1,- . em),g(€1,...,€m)} >0

for any two coordinatewise nondecreasing functions f,g on R™ such that the
covariance is defined. An infinite collection of random variables is associated if
every finite subcollection is associated. This concept was introduced by Esary,
Proschan and Walkup (1967). Many authors also have studied this concept pro-
viding interesting results and applications. See for example, Newman and Wright
(1981), Newman (1984), Cox and Grimmett (1984), Birkel (1988), Roussas (1994)
and Matula (1998).

In this paper we prove a weak convergence (see Theorem 1.1) for a linear
process of the form (1.1) generated by a strictly stationary sequence of associ-
ated random variables, which is a generalization of Newman and Wrights’ (1981)
invariance principle to the linear process. We also apply this idea to the linearly
positive quadrant dependent sequence.

Theorem 1.1. Let {a;} be a sequence of real numbers with 322 ]aj| < oo
and {€:} a stationary sequence of associated random variables with Ee; = 0 and
E€? < 0o and satisfying

[e o]
O<02=Ee%+2ZE(elet) < 0. (1.2)
t=2

Let X; be a linear process of the form (1) and 72 = (370 aj)?0?. Then, we
have, for s € [0,1]

[ns]
1
—_— X A 1.
T\/ﬁtzzl = W, (1.3)

where = denotes weak convergence and W denotes a standard Wiener process.

2. Proof of Theorem

Newman and Wright (1981, Theorems 2 and 3) showed the following: If {e;}
is a strictly stationary sequence of associated random variables with Fe; = 0 and
Ee? < oo and satisfying (1.2) then

k
E max (Z e,;) <E(e1+ - +em)? (2.1)
i=1

1<k<m
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and

1
—=Y @ =>W. (2.2)
Proof of Theorem 1.1. For every fixed m, put

m 00
Xl,t = Zajet_j and X27t = Z aj€¢—j- » (2.3)
Jj=0 j=m+1

From Fuller (1996) we have, for any n > 1,

ZX“ = ZZaJet —j

t=1 j=0
m n m m m-—1 m
SDICHICED IR I I SR
7=0 t=1 k=1 j=k k=0 j=k+1
m n
=> a;y e+I-1I, (2.4)
j=0 t=1

where I = 31" €1 ZTzk aj, I = Z;an_ol €n—k Z;".l—_kﬂ aj.
Thus it follows from (2.2), (2.3) and (2.4) that, for every fixed m > 1 and
s €[0,1],

[ns]

TfZXt Za] szet+ (I—1II)+ ZXQt, (2.5)

where 72 = (3520 a;j)?0?. From (2.2) and the fact that

m 2
Zaj oz = 712 (2.6)
J=0

as m — oo, the first term of the right-hand side of (2.5) converges weakly to W.
According to Theorems 4.1 and 4.2 of Billingsley (1968), to prove (1.3) it
suffices to show that, for any ¢ > 0 and every fixed m > 1,

limsupP( sup |I| > ET\/ﬁ) =0, (2.7)
n—00 0<s<1

limsupP( sup |II] > eT\/ﬁ) =0 (2.8)
n—00 0<s<1
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and
[ns]
lim limsupP{ sup |> Xy >erv/np =0. (2.9)
m—o00 n—ro0 OSSSI =1
Note that
1
max || — 0 (2.10)

T/ —n<t<n

in probability by the assumption. From (2.10) and 3272, |aj| < co we have

—— sup |1 < max |e a -0, 211
T\/_O<sl<)1| | N —m<i<n | tl; ]Zk' il (2.11)

]. ]_ m m
sup |[II| < —= max |e all =0 912
T\/— 0<sgl | ' \/’f_l n—-m<t<n ' tl ; Z I J! ( )

j=k+1

in probability. Hence, from (2.11) and (2.12), (2.7) and (2.8) follow respectively.
It remains to show (2.9). First from (2.3) we have, for any n > 1

n oo n
ZXQ’,: = Z aj Zet_j. (2.13)
t=1

j=m+1  t=1

And, from (1.2) and (2.1) we have

2
supElrélkai(n (Zet ]) < cno?, (2.14)

for some constant ¢ since the random variables are stationary.
By applying Minkowski’s inequality, it follows from (2.13) and (2.14) that

[ns] 2 oo [ns] 2
E sup (ZXz’t) = FE sup ( Z CL]ZGt ])

Os<l | 4=1 0SSl \ jomt1  ¢=1

2
<E< Z la;| sup Zet —j

j=m+1 0<s<1
2y 1/2\ ?
0o [ns]
<| {5 s (Sl

j=m+1 0<s<1 4=
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2
00

< co’n Z laj| | - (2.15)

j=m+1

From (2.15), the Markov inequality and the fact that

oo
> lajl = 0 (2.16)
Jj=m+1
as m — 0o, (2.9) follows immediately. Hence, the proof is complete. O

Remark. Taking s = 1 in the theorem, we obtain the central limit theorem: Let
{X:} be a linear process defined as in the theorem. Then, for ¢ € [0, 1],

- d
X; — N(0,1)
’r\/ﬁ;

d . S .
where — denotes convergence in distribution.

3. Applications

We will prove a weak convergence for a linear process with linearly positive
quadrant dependent sequence by using the idea based on the proof of the theorem
in Section 2.

Definition 3.1. A sequence {¢;,t € Z,} of random variables is said to be lin-
early positive quadrant dependent(LPQD) if for any disjoint subsets A,B C Z
and positive 1;’s 3 .- 4 Ti€i and Y. pri€; are PQD.

Newman (1984) introduced this concept and also established the central limit
theorem. Birkel (1993) obtained a weak convergence for LPQD sequences as
follows.

Theorem 3.1. (Birkel, 1993) Let {¢;} be a stationary sequence of LPQD ran-
dom variables with Ee; = 0, Ee? < oo and satisfying (1.2). Assume for some
p>0ands>?2

o

Y Elae) =0(n"), (3.1)

t=n-+1
Ele]® < o0. (3.2)
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Then, for s € [0,1]

[ns]

(ov/m)~! th = W,

t=1
where = denotes weak convergence and W denotes a standard Wiener process.
Theorem 3.2. Let X; be a linear process of the form (1.1), where {a;} is a
sequence of real numbers with 322 |aj| < oo and {e:} is a stationary sequence

of LPQD random variables with Fe; = 0, Ee? < oo and satisfying (1.2), (3.1)
and (8.2). Then, for s € [0,1]

— X; =W,
T\/ﬁ t=1
where 72 = (352 aj)*0”.

Proof. As in the proof of Theorem 1.1 we have (2.5). By Theorem 3.1 and (2.6)
the first term of right-hand side of (2.5) converges weakly to W. By Theorems
4.1 and 4.2 obtained in Billingsley (1968) it suffices to show that (2.7), (2.8) and
(2.9) hold. But (2.7) and (2.8) still hold here as in the proof of Theorem 1.1. To
prove (2.9) we consider (2.13), i.e.

n o0 n
Z X9t = Z aj Z €1—j (3.3)
t=1

j=m+1l  t=1

for any n > 1. By Lemma 3 of Birkel (1993) and Theorem 3.7.5 of Stout (1974),
it follows from (3.1) and (3.2) that for r > 2

k
E €t—j
t=1

By applying Minkowski’s inequality from (3.3) and (3.4) we have

r o [ns] T
= FE sup Z a; Z €t
0<s<1 j=m+1 t=1

1<k<n

) = 0(n'/?). (3.4)

sup F max (
J

[ns]
FE sup Z Xoy

0<s<t \ 45
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00 [ns]
<E Z |aj| sup th—j
j=m-+l1 0ss<l t=1
~ [ns] ry I/r\ T
<| 5 {E o [S ol
jemtl | 0SSl io
T
00
<ec Z la] n/2, r>a2. (3.5)
j=m+1

Now from (3.5), the Markov inequality and (2.16), (2.9) follows immediately.
Hence the proof of Theorem 3.2 is complete. |
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