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A Combined Method Compensating for Wave
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ABSTRACT

This paper suggests a new method of compensating for wave nonresponse
in panel survey, which combines weighting adjustment and imputation. By
deleting less frequent nonresponse patterns, we can get simplicity. A new
mean estimator under the new combining method is provided and a limited
simulation study employing a real data is conducted.

Keywords. Wave nonresponse, panel survey, attrition, weight adjustment, impu-
tation, hot deck, adjusted jackknife variance estimator.
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1. Introduction

Nonresponse occurs frequently in surveys. Nonresponse is generally consid-
ered to be of two types: unit nonresponse and item nonresponse. Compensating
for unit nonresponse is customarily made by weighting adjustment method. On
the other hand, item nonresponse is usually handled by some form of imputation.

In addition to unit and item nonresponse, another type of nonresponse, named
wave nonresponse, occurs in panel survey. Wave nonresponse occurs when one
or more waves of panel data are missing for a unit that has provided data for at
least one wave. Both weighting and imputation may be used to compensate for
missing data due to wave nonresponse.

Rizzo et al. (1994), and Folsom and Witt (1994) used weighting adjustments
methods for panel nonresponse in the Survey of Income and Program Partici-
pation (SIPP). Kalton and Miller (1986) conducted a simulation study among
three-wave respondents from the first three waves of the SIPP 1984 panel. They
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addressed the use of imputation and weighting for wave nonresponse and offered
a number of insights into the quality of the two strategies for the problem of wave
nonresponse. Lepkowski (1989) examined missing data compensation strategies
for wave nonresponse. Weighting adjustment method is easier to implement and
preserves the relationship in the observed data. However, it may give poorer qual-
ity nonresponse compensation than imputation. Furthermore, it requires many
different sets of weights to execute longitudinal analysis. Imputation is easier to
use and is simple to meet all analytic objectives. However, it reduces the ability
to detect important relationships among survey variables through attenuation of
the strength of observed covariances.

Because of the complementary strengths and weaknesses of the weighting
and imputation strategies, it is natural to think of combinations of the two ap-
proaches. Lepkowski (1989) presented two kinds of combined approaches: “im-
putation for completing attrition nonresponse” approach and “imputation for
completing wave nonrespondents” approach. The objective of this study is to
suggest a new method of compensating for wave nonresponse in panel survey,
which combines weighting adjustment and imputation. In Section 2, the idea of
combining method is provided. Estimation of mean under the new combining
method is described in Section 3. A numerical example is considered in Section
4 and finally some concluding remarks are given in Section 5.

2. New Combining Method

2.1. Wave nonresponse patterns

In preparation for the description of a new wave nonresponse compensation
method, it is useful to introduce wave nonresponse patterns in panel survey. Fig-
ure 2.1 shows several patterns of wave nonresponse that may occur in a three
wave panel survey. x and o denote a wave response and a wave nonresponse,
respectively. The shaded part represents wave nonresponse. There are wave re-
sponse/nonresponse patterns for the three-wave panel. Among wave nonresponse
patterns, patterns in which the respondent appears in an early wave and then
fails to respond at later waves are called attrition patterns, and all the other
wave nonresponse patterns are called non-attrition patterns. While xxo and xo0
belong to attrition patterns, xox, oxx, oxo, oox belong to non-attrition patterns.

The frequency distribution of the wave response/nonresponse patterns will
vary across surveys depending on the survey topic, survey organization. and
other factors. Table 2.1 presents the frequency distribution of respondents to
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FIGURE 2.1 Wave nonresponse patterns for a three-wave panel survey

two panel surveys: The Income Survey Development Program 1979 (ISDP) and
The 1984 Survey of Income and Program Participation (SIPP) (Lepkowski, 1989).
The data in Table 2.1 are for the first three waves of each panel. In both ISDP
and SIPP the largest percentage of persons are three-wave respondents (80.2%,
90.0%). Among wave nonreponse patterns, the attrition patterns are the next
most frequent patterns (7.2%, 6.7%; 4.9%, 4.2%). The nonattrition patterns
are the least frequent (2.3%, 2.2%, 0.6%, 0.9%; 0.9%). While the percentage
distribution of ISDP contains wave 1 nonrespondents, the SIPP 1984 Panel does
not since wave 1 nonrespondents were not followed at later waves.

TABLE 2.1 Response patterns for the first three waves

Response Pattern ISDP  SIPP
Respondents xxx 80.2% 90.0%
Attrition Wave xxo 7.2% 4.9%
Nonrespondents xoo 6.7%  4.2%
XO0X 2.3% 0.9%
Nonattrition Wave oxx 2.2% -
Nonrespondents oxo 0.6% -
oox  0.9% -
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2.2. New method

Considering the complementary strengths and weaknesses of the weighting
and imputation methods, it is natural to try to combine the two approaches.
Lepkowski (1989) introduced two combining methods such as the imputation
for completing wave nonresponse approach and imputation for completing at-
tribution nonresponse approach. Imputation for completing wave nonresponse
approach uses imputation to complete wave nonresponses for those patterns in
which only one wave is missing (e.g., patterns xxo, xox and oxx), and the re-
maining wave nonresponse patterns deleted and compensated by weighting. On
the other hand, imputation for completing attrition nonresponse approach first
uses imputation to convert nonattrition patterns into attrition patterns and then
employs attrition weighting methods to compensate for the remaining wave non-
response. For example, the nonattrition patterns oxx and xox could be completed
by imputation, and the nonattrition patterns oxo and oox are deleted.

As can be seen in Table 2.1, the percentage of the non-attrition pattern is
very low. However, many complicated problems arise to compensate for wave
nonresponse of that pattern. Hence, by deleting less frequent patterns, it is
possible to get simplicity and practicability. From now on, only three wave panel
survey is dealt with for simplicity. However, it can easily be extended to more
than three wave panel survey. We use data of such patterns, xxx, Xxxo0, X00, XOX,
only and discard data of the other patterns, oxx, oxo, oox, ooo (Type D and E).
Figure 2.2 shows the above explanations schematically. The shaded part indicates
data which are discarded.

In the first wave, we use only weighting adjustment method for nonresponse.
In other words, no imputation is taken to compensate for nonresponse. The initial
weights for survey units are replaced with the adjusted weights. Let N be the
population size and let n sample size. Denote n; for the number of respondents
in the wave 1. In this case n — n; nonrespondents are discarded from the sample.
Thus the sample size for analysis is n;.

Nonresponse in the wave 2, which is represented by B and C type in Figure 2.2,
is filled with by imputation method. Denote ng for the number of respondents
in the wave 2 among 7n; units which are respondents in the wave 1. Then nj
values are imputed by using the n; — ng responded data as doners in the wave
2. For nonresponse in the wave 3, which is represented by A and B type, some
consideration is needed. While for type A it is simple to fill out, for type B there
may be many choices. To fill nonresponse in the wave 3, using the imputed value



A Combined Method for Wave Nonresponse 473

Response Pattern Type

XXX
XXX
XXX three-wave

XXX response

XXX
XXX

XX0o

X00

XoxX

OXX
0X0 D
00X

Q00 E

FIGURE 2.2 Response pattern of three-wave panel

in the wave 2 may be a choice. Taking a new value through another imputation
can be another choice. Here we take another imputation for nonresponse in the
wave 3, which is independent of the imputation used in the wave 2, since that
make matters easier. In this case, the same unit may take imputed values from
different doners as wave changes.

3. Estimation

3.1. Notation

We will consider the case of simple random sampling of size n from the pop-
ulation of size V. Let y;; be the value of a variable y for the 4" unit in the wave
i (1=1,2,3; 5 =1,2,...,N). Denote ni, ng, n3, the numbers of responses for
wave 1, 2, 3, respectively and nf the number of respondents in the wave 3 who
responded in the wave 2, and nf that who did not respond in the wave 2. Then
n3 = nj+nj. Since nonresponded units in the wave 1 are to be discarded from the
sample in subsequent wave, it is sure that both ng and ns are less than n,. The
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FIGURE 3.1 The number of response at each wave

following Figure 3.1 shows the number of response at each wave schematically.

Denote the number of nonresponse in the wave 1 as n] = n — ny. Similarly,
let n3, n3 be the number of nonresponse in the wave 2 and 3, then nj = n; —
ng and n = ny —ng = n} + ni*, where n} = ny — nj and n3* = n} — nf.
For nj nonrespondents in the wave 2, imputation is taken. We assume a single
imputation class for simplicity. Denote Yr; as the imputed value for the j**
nonresponded unit (j = 1,...,n}) in the wave k (k = 2,3). For several means we
have the following definitions:

N

_ 1

Yy = N E Yr;: population mean in the wave k,
j=1

1 n
Yoy = Z Yr;: sample mean in the wave k,

=1
1 &
Ykyr = a Zykj: respondents’ mean in the wave k.
j=1
3.2. Cross-sectional mean
In case of no missing data, the sample mean in the wave 1, ) = (1/n)

>_j=1Y1;, is an unbiased estimator of the population mean, Yy = (1/N) Z;\;l Y1;.
However, if n] (= n — n;) nonresponse occur in the wave 1, we use a weighting
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adjustment method to compensate for missing data as have mentioned in Section
2. Then (1) can be rewritten as

Zyu = nly Wy + 73T (1)nr] - (3.1)

Since there are no data available to calculate §1),,, some weighting adjustment
is made to each responded unit. That is, after removing (n}/n)J1)n, from (3.1),
replace the weight 1/n for the j% unit (j = 1,...,n}) with (1/n)(n/n;) = 1/n,.
Suppose that the nonresponse happens at random, then an unbiased estimate of
17(1) is provided by

= _ 1
Yiw =9ay = — Zylj- (3.2)

where

Sty = Z

1

By plugging the sample variance of responsdents, 3(1) , into S(l), we can get an
estimator of variance (3.3). For the population mean in the wave 2, 3, Y(k)
(1/N)¥ j=1Ykj» k = 2,3, the following estimator is unbiased in case of no missing
data:

Z Ykj = nky(k)r + nky( n ] (3'4)

Here, we use imputation method to compensate for Y(k)nr- Denote yj ; as the im-
puted value for the missing value yx;, j € A(gymis, Where A(kymis T€DPTEsents the set
of missing units in the wave k. Then unbiased estimate of )_’(k) = (1/N) 25\;1 Ykj
is given by

T 1 - * —%
Yoy = - (M G(kyr + PET k) » (3.5)



476 Jinwoo Park

where g7, = (1/n%) Z;lil Ykj- Many kinds of variance estimators, such as ad-
justed jackknife variance estimator (Rao and Shao, 1992), balanced half sample
variance estimation (Shao and Rao, 1996; Shao, Chen and Chen, 1997), boot-
strap variance estimator (Shao and Sitter, 1998), model-assisted variance esti-
mator (Sarndal, 1992), are developed to estimate V()c"(k) 7). We use the following
adjusted jackknife variance estimator in this paper. Let

no

o~ 1%,
Yor(rs) =~ 3 (W3 (=1) = Gor)’, (3.6)

i=1

where the i** replicate is

( 1 i, * ~ . _ e
o —1 [nmym — Yoi + Z (yoj + Fo1(—1) — ym)], ifie A,
Y5 (=) = < FE€Amis
1_ [no1901 ~ y5il if i € Amis
\ 710 1
( 1 . .
ng — 1 [no.%[ — Yoi + . Z Zg]'i], ifi € Apes,
= 4 1 ]eAmis
Lng — 1 ["lOgOI - ySi]’ if i € Apis.

3.3. Estimation of mean change between different waves

The key advantage of panel survey is its abilities to measure mean or mean
change between different waves. Estimation of mean change between different
waves is considered here. The mean change between the wave k and the wave
k' is denoted as Y(k) — }—’(k/). First, consider the mean change between wave k
(k =2,3) and wave k' = 1. The following is an estimator of Y — ¥{1):

——— ~

Yy = Yoy = Yo = Y- (3.7)
If the imputation is performed such that a simple random sample of size n] is
selected with replacement from A(y),e, in the wave 2, where A(y),., denotes the
set of respondents, then the above estimator in (3.5) can be represented as

" 1
Yo = n—1(1 + d2i) Y2, (3.8)

where dy; is the number of times that unit i is used as a doner, i € A(2yres- Then
Er(Yuyr — Yay) = Er(Yur — YoulR, D) =3
n

R L 1
Vi (Yr = Yayw) = Vi{¥wyr — YaylR, D) = —2(1 - =) 8%
1
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where I denotes imputation, R denotes response mechanism, and D denotes
sampling mechanism. So,

A

V(Y = Vi)

_ _ ny 1
= V(8w —90) +E [—’%(1 - —)Sﬁar]

ny gk

= VpEr(Uwyr — U1)) + EpVr([Feyr — U(1))

+EpER [Z—? (1 - %)S?k)r} (3.9)
= V(e - 9w) + (;1; - ,%)5(21«) + %’%(1 - nik)g(zk)
= V{dw) +V ([#0) = 2Cov (5w, 7)) + (7117 - nl—l) St

+ Z—’%(l - ;11;) 5%

Various estimators for V(%)) and V (#1)) have been suggested by many authors.
Therefore, it needs only to find a reasonable estimator of Cov ('g(k), g(l)). Since
there are nj; units which are respondents both in the wave k& and in the wave
1, use only the data on nj respondents to estimate Cov(gk), §(1))- Then, the
following (3.10) can be an estimator of Cov (), §(1)):

*2
— _ _ S(l)k
Cov (), G1)) = e (3.10)
where
2 1 S
SOk = o7 > (vii = 70)) (wks — ¥iy)
1

1 & 1 &
Uy = ;;,Zyu, ey = ggzykr
1 1

Next, consider the mean change between the wave 3 and the wave 2. A natural
estimator of the mean change, Y(3) — (o), is

Yig) — ¥io) = Yigyr — Yoorr- (3.11)

Since both 12/(3) 7 and 1?'(2) ; contain imputed values, it is very complicate to derive
the variance of the above estimator. Thus. to make matters easier. consider a
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modified estimator of }_’(3) — 17(2) such that

——

37(3) - )7(2) = Y(?s)] — Y@ (3.12)

where

f/(};)l = _(2931 + Z y3])

n3+1

Note that only no units, respondents in the wave 2, are used. It is straight-
forward to show the unbiasedness of (3.12). The following is the variance of the
estimator (3.12).

V(¥ —b@r) = V{ie) + V(ie) - 200§ i)

. (3.13)
1 1 D) 7l3l 1 2
(n_g - ,TQ)S@) gg(l )5
where
1 & 2
Sty = o ; (y35 — Gm))

- 1 &
Y3y = Ty Zij-
1

The above estimator can be derived easily with similar calculation done in
(3.8).

Since there are n§ units which are respondents both in the wave 2 and in the
wave 3, use only the data on nj respondents to estimate Cov(§(3),%(2)). Then,
an estimator of Cov (g](g), 5(2)) is as follows:

s**2

Cov( U3, U(2)) = %, (3.14)
where
1 ny
5(3) = ) zl: (v25 — 9(5)) (v35 — 93))

1
Yoy = Z Y250 U(z) = Z Y3j-
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4. Numerical Simulation

In order to test the performance of the proposed method, we conduct a lim-
ited simulation study employing a real data from the Korean Household Income
and Expenditure Survey (KHIES). The size of the KHIES sample (Seoul), n, is
1025. We consider only three waves and use amount of expenditure as the study
variable. Since all the data are complete response data, we simulate different
missing situations.

In the first wave, we consider two missing types: One is 10% missing (type
A), the other is 20% missing (type B). We select a subsample at random from
the sample and make them nonresponse. Nonresponse in the first wave is deleted
from the sample. In the second wave, only 95% of the respondents in the wave 1
give response and the other is missing. However, nonresponse in the second wave
is not deleted. 95% of the units which belong to xx response pattern at the first
two waves give response in the wave 3, and 5% of the units of xo response pattern
also give response. We employ a weighting adjustment method to compensate
for the nonrespondents in the wave 1, and use a hot deck imputation method for
the nonrespondents in the wave 2 and 3. Table 4.1 shows the simulated response
patterns. Since only sample data are available, it is impossible to calculate the

TABLE 4.1 The simulated response patterns

Response Pattern missing type A missing type B
XXX 829 (80.9%) 731 (71.3%)

XX0 45 ( 4.4%) 34 ( 3.3%)

X00 4 ( 0.4%) 2 ( 0.2%)

X0X 43 ( 4.2%) 53 ( 5.2%)

000 104 (10.1%) 205 (20.0%)

1,025 ( 100%) 1,025 (100%)

bias and the MSE of each estimator. Hence, we try to compare the estimates
suggested in Section 2 with the sample mean calculated with complete response
data. The values of the mean estimates and their corresponding standard errors
are calculated in Table 4.1. We get three different estimates for each missing type
A and B, respectively: The first one is the sample mean of responded data only,
the second one is the estimate after imputation under single imputation class,
the last one is the estimate after imputation under two imputation classes.
Table 4.2 shows that there are no significant differences among several mean
estimates. Since random nonresponse mechanism is assumed and all the estima-
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tors used is unbiased, that result seems natural. If nonresponse is nonignorable.
we may divide the sample into many imputation classes by use of some auxil-
iary information. Even in that case random nonresponse mechanism within an
imputation class may be employed, so the results in this simulation study make
senses. The values in the parentheses are standard error of each estimator which
is calculated by use of (3.3), (3.6) in Section 3. To examine the relative efficiency

TABLE 4.2 Cross-sectional mean estimates and standard errors

missing type I l 1st wave [ 2nd wave l 3Ird wave
completely mean estimate | 3899041.0 | 4524057.1 | 4114893.2
responded (98426.2) | (160554.5) | (134019.9)

estimate from 3816923.1 | 4435878.2 | 3978215.7
responded data | (104687.6) | (179956.6) | (149507.3)
missing type A | estimate from | 3827807.4 | 4426959.0 | 3977133.7
one imp’n class | (102574.4) | (161241.1) | (146114.2)
estimate from 3897913.6 452064.3 4084361.3
two imp'n class | (101378.9) | (160557.2) | (142061.1)

estimate from 387437.2 4401375.2 3860809.6
responded data | (108594.4) | (184792.3) | (155285.5)
missing type B | estimate from 3801373.4 | 4418441.3 399262.8
one imp'n class | (110031.4) | (185898.2) | (154971.2)
estimate from 3900137.5 4476338.2 3976372.5
two imp'n class | (106549.5) | (178294.6) | (148055.6)

of each estimator, we compare the variance estimates under each missing type
with that of complete response data. Table 4.3 presents the relative efficiencies
of several estimates. If missing data are deleted, it causes decrease of sample
size. Looking at the first row in each missing type, some inefliciency is caused
due to the decrease of sample size. After using imputation method under one
imputation class to compensate for missing data instead of deleting, the gain
in efficiency is only a little under missing type A and is almost the same under
missing type B. However, in case of using two imputation class, the gain increases
a little. Table 4.4 contains the results of longitudinal analysis. Unfortunately.
the estimates of correlation coefficients between different waves lie in (0.00, 0.30).
Hence the coefficients of variation for the mean change estimators are too large.
In spite of that all, we can note that the standard errors calculated by (3.9) and
(3.13) are smaller than those calculated under the assumption that the sample
in a wave is independent of other samples in different waves. This result comes
from the fact that the data from different waves are positively correlated.
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TABLE 4.3 The comparison of relative efficiency

missing type | 1st wave l 2nd wave | 3rd wave
est. from responded data 1.13 1.25 1.25
A est. from one imp'n class 1.08 1.17 1.18
est. from two imp’n class 1.06 1.00 1.12
est. from responded data 1.20 1.32 1.36
B est. from one imp'n class 1.39 1.34 1.35
est. from two imp’n class 1.17 1.21 1.20

TABLE 4.4 Standard errors of mean change estimates between different waves

missing type [ difference L s.e. of the suggested est. Ts.e. of the indep. sample

Yoy — Yy 182366.2 189418.4
A Yy — Yoy 178805.9 190981.8
Y3y — Yoo 224888.5 226517.9
Yoy — Y1y 202551.7 207477.7
B Y3y — Yy 174176.5 186555.5
Y3y — ¥z 226623.4 231595.1

5. Concluding Remarks

It is a very complicated problem to treat wave nonrespounse in panel surveys.
To compensate for wave nonresponse, both weighting adjustment approach and
imputation approach can be considered. Since each method has in some sense
complementary strengths and drawbacks, it is natural to consider combinations
of the two approaches. Therefore, we suggested a new combined method, in which
we can get simplicity by deleting less frequent nonresponse patterns. The results
of our simulation study indicate that the proposed method is quite simple to use
and may give a reasonable performance.

REFERENCES

Folsom, R. E. and Witt, M. B. (1994). “Testing a new attrition nonresponse ad-
justment method for SIPP”, Proceedings of the Section on Survey Research
Methods, American Statistical Association, 428-433.

Kalton, G. and Miller, M. (1986). “Effects of adjustments for wave nonresponse
on panel survey estimates”, Proceedings of the Section on Survey Research



482 Jinwoo Park

Methods, American Statistical Association, 194-199.

Lepkowski, J. M. (1989). “Treatment of wave nonresponse in panel surveys”, In
Panel Surveys, John Wiley & Sons, 348-374.

Rao, J. N. K. and Shao, J. (1992). “Jackknife variance estimation under hot
deck imputation”, Biometrika, 79, 811-822.

Rao, J. N. K. and Shao, J. (1996). “On balanced half-sample variance estimation
in stratified sampling”, Journal of the American Statistical Association, 91,
343-348.

Rizzo, L., Kalton, G., Brick, M. and Petroni, R. (1994). “Adjusting for panel
nonresponse in the survey of income and program participation”, Proceed-
ings of the Section on Survey Research Methods, American Statistical As-
sociation, 422-427.

Shao, J., Chen, Y. and Chen, Y. (1998). “Balanced repeated replications for
stratified multistage survey data under imputation”, Journal of the Amer-
ican Statistical Association, 93, 819-831.

Shao, J. and Sitter, R. R. (1996). “Bootstrap for imputed survey data”, Journal
of the American Statistical Association, 91, 1278-1288.



