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Local Influence Analysis of the Equicorrelation
Model'

Myung Geun Kim' and Kang-Mo Jung?

ABSTRACT

The influence of observations in the equicorrelation model is investigated
using the local influence approach when all parameters or subsets of param-
eters are of interest. When a parameter of interest is scalar, an analytical
form of the local influence measure can be found. We will derive a measure
for identifying observations that have a large influence on the test of fitting
the equicorrelation model. An example is given for illustration.
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1. Introduction

The local influence method was introduced by Cook (1986) as a general
method of assessing the influence of minor perturbations of the model and it
can be used for identifying observations that influence the assumptions underly-
ing the model. The local influence method has been adapted to a variety of other
models, for example Box-Cox transformation model (Lawrance, 1988), multivari-
ate regression model (Kim, 1995) and maximum likelihood factor analysis model
(Jung et al., 1997). It has been an efficient means for obtaining information about
the influence of observations. Besides local influence other methods in influence
analyses can be found in Barnett and Lewis (1994).

The equicorrelation model, also called the intraclass model has a pattern of
equal variances and equal covariances in the covariance matrix. The variables are
correlated and every pair of variables has the same correlation coefficient under
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the equicorrelation model. The equicorrelation model is used for checking the
validity of standard ANOVA approach to repeated measures design (Rencher,
1995). Also, the common correlation coefficient is used for measuring the agree-
ment between quantitative measures in epidemiological studies and Giraudeau
et al. (1996) studied the single case deletion effect on the common correlation
coeflicient. There are few or no works on diagnostics in the equicorrelation model.

In this work we will study the influence in the equicorrelation model using the
local influence method. In Section 2 the likelihood equations for estimating the
model parameters are reviewed. In Section 3 we will review the local influence
method and then derive local influence measures for the equicorrelation model
when all parameters or subsets of parameters are of interest. In particular, when a
parameter of interest is a scalar, an analytical form of the local influence measure
can be found. In Section 4 we will derive a measure for identifying observations
that have a large influence on the likelihood ratio test of fitting the equicorrelation
model, following the results of Lawrance (1988). In Section 5 an example is given

for illustration.

2. Preliminaries

Let x1,x3,...,Xx, be a random sample from a p-variate normal distribution
F(x) =] 278 |72 exp{—(1/2)(x — 1) "= (x - )},
where the covariance matrix 3 has the following equicorrelation form
B =o*{(1 - p)L, +plyl; },

where 0 > 0 and 0 < p < 1. We write 1, as the p x 1 vector with all elements
equal to 1. Let x = (1/n) 31 x; and S = (1/n) S0, (% — %) (x; — %)T. In what
follows, we use the hat notation to denote its maximum likelihood estimator of a
parameter. Then the maximum likelihood estimators of u, 02 and p are given by

p=x
-2
¢ = —tr(8S),
Yy (2
P =T

i<j

where s;; is the (i, )" element of S. This result will be used in Section 4. More
details can be found in Rencher (1995).
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3. Local Influence

In this section we will review the local influence introduced by Cook (1986)
and then derive local influence measures for the equicorrelation model when all
parameters or subsets of parameters are of interest.

Let w = (wi,...,w,)T be an n x 1 vector of perturbations. We consider the
perturbed model in which the u** observation x, is perturbed according to

Xy ~ N(p, X/wy) (3.1)

foru=1,...,n. When the w, are set equal to one, the perturbed model reduces
to the unperturbed model.

Let 8 be the (p + 2) x 1 vector of parameters formed by stacking o, p and
. We denote the log-likelihoods for the unperturbed and perturbed models by
L(8) and L(B|w), respectively. The likelihood displacement LD(w) is defined
by 2[L(8) — L(8,)], where 8 and 8,, are the maximum likelihood estimators of
6 under the unperturbed and perturbed models, respectively. The surface of
interest is formed by the (n + 1) x 1 vector of the values w and LD(w) as w
varies over a certain space. Define the (p + 2) x n matrix

_ O0?L(8 | w)
A= 006wT

evaluated at @ = 6 and w = 1,,, and the (p + 2) x (p + 2) matrix

. 92L(6)
L=
86607

evaluated at @ = 6. Let F be the n x n matrix defined by

F=ATL)A.

Let I,nqz be the eigenvector corresponding to the largest absolute eigenvalue
of —2F and let 1(;) be the 1 x 1 vector with its i" element equal to 1 and the oth-
ers being zero. Then the largest absolute eigenvalue is the maximum curvature
of the curve which is the portion of the surface cut out by the plane spanned by
the vectors 1(,1) and (1% ..,0)T (Cook, 1986, pp. 138-139). Observations cor-
responding to the large elements of the first direction vector 1,4, are influential.
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3.1. All parameters are of interest
The determinant and inverse of ¥ are given by

|2 =01 - p)P {1+ (p—1)p},

1 p
>t IR § S A T Y A
(1-po? |” 1+(p—1)pp”}’

respectively. Ignoring unimportant terms, the log-likelihood function for the un
perturbed model is

L(p,0,p) —~{2p10g( )+ (p—1)log(1 - p) +1log(l + (p - 1)p)}

—e—— Y (xu— ) (% — )
2(1—,0)(72112::1 . ) »

p o 2
A+ (- Daje? 2 e WF

Using the identity that

n

> {1 (xy — %)} =17 {Z (xy — x)T} 1, =n1l81,

u=1

= nps*{1 + (p — 1)p},

we have the following partial derivatives evaluated at 6 = 6 to get L

8 L{p, 0, p) o1
——8u6uT = —nXx
Lp,0,p) _ 4
Ouda ’
OL(ps9:p) _ o
, Oudp ’
0°L(p,0,p) _mp  3n
do? 62 (1- )04t x(8)
3p =\ o 12
HEm At D & e )
2np
= —?’
&L, 0,p) n
dodp  (1- )203tr(S)

{1+ (p—1)p%} _ 2
W —1p}203Z{IT
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_ np(p —1)p
(1 =p){L+(p—1)p}o’
0L(p,0,p) _ n(p—1) np-1% n (S
o7 21-p2 Hi+@-DpE (- e

-1 +3(p-1)p—p+2 7 112
1 —-
=P+ o Dpar 2 (o =%}
np(p — D{1 + (p— 1)p*}
2(1=p){1+ (p—1)p}?
Ignoring unimportant terms, the log-likelihood function for the perturbed

+

model is
p - n 1 Ts—1
L(p,orp | w) =53 log(wy) = 5 log | | =5 D wulxy — ) 57 (% — ).
u=1 u=1

The matrix A in F is obtained by using the following partial derivatives evaluated
at0:@andw=1n,

BQL([J,,O',p|W) _ sl <
opow, > (),
82L(“70,p l W) — 1 (X ——i)T(x _)—()
0o 0wy, (1—p)a3™™ ) “
_ p Tl _ )12
=P+ o= Dge Vp e =)
= 6o = %75 e - ),
2L(p,0,p| W) 1 _ _
dpow, B paE T %)" (e~ %)
_1ya2
+ L+ (- 1p {1Z(xu—i)}2

2= AP (L + (o~ Do)

\T —
- - ——(Xy — X)" (%, — X
20— P+ (p)~21>p}o2( w R =)
1+(p—1)p ATt
~ 5% = — (X, — X)X
250 = )1+ (o~ D} " )
Theorem 1. Under the perturbation scheme (3.1), the n x n matriz F can be

written as

. 1 r
—2F = = {ZH LSRN . (ie - h) (—12—e - h) } , o (32)
n o

(xy — X).

p p(p —1)p? \ 62

where H = )N(ffliT, h and e are n x 1 vectors formed by the diagonal elements
of H and E = XXT, respectively, and X is the centered matriz of the n X p data
matriz X, that is, X = X — 1,x7.
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Proof. First, the matrix L can be partitioned as

- L O
L= . 1
O —nx

)

where

o Opda
B2L(p,0.0) B*L(M,0,p)
dadp ap?

[BQL(N,o,p) BQL(u,U,p)}
8.2
L=

A little algebra yields

. Ll O
L' = o iz (3.3)
where
Lo L i+ -0 p1-p{1+ (e -1pke
T T A= {1+ - DpYe (- X1+ (- 15|

Next, the matrix A can be partitioned as AT = [AIT,AQT], where Ay =
a1~

> "XT and A; is the 2 x n matrix whose u® column vector is

O*L(,0,plw) *L(p,o,plw)]"
0o Owy, ’ OpOw, '

Then we have
2 Ty —1 NS

Therefore, the (u,v)™ element of ATL ' A, is

1 1 1 1
_én_phuuhvv T o= 17 (geuu - huu) (ggevu - hvu) ,

where Ay, and ey, are the (u,v)*" element of H and E, respectively. This com-
pletes the proof. O

In Theorem 1 we can see that the (u,v)™ element of H is just the squared
Mahalanobis distance between observations x,, and x, under the equicorrelation
model. It seems that we cannot find a closed form of the eigenvector 1., of
—2F.
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3.2. Subsets of parameters are of interest

Suppose that @ is partitioned into 87 = (0 0’{), where only the subset 6, is
of interest. Cook (1986) obtained the normal curvature for 8, as the eigenvalue
of —2G with

G =AT(L'-By)A, (3.4)
OO0 . . . .
where Byy = _;| and —Lgs is the information matrix of 8.
When only o is of interest, we have in (3.4)
9L _92L 7! PTANE
L=l = | 97 auTap . (W) O
22 7 | 8% 2L - 1]’
opudp dpudpuT o X
where L denotes L(u,o,p). Thus, we obtain
. L, O
—1 *
— By, =
L 22 00
where
bo_ L[ HOEG-DM a0 pL+ - 1)
Tonp [p1-p)(1+ (p-1)p)e 2D IHEL)
Therefore, —2G becomes
. 1 T
-2G, = ee', (3.5)

np{l + (p — 1)p*}6*

where E is defined in Theorem 1. Let A = caa” for a p x 1 vector a and a con-

T

stant c. The eigenvalues of A are ca’a and zeros. Furthermore, the normalized

eigenvector of A corresponding to ca’a is a/ VaTa. Therefore, lyqee for —2G,
is e/VeTe.

Next consider the case in which only p is of interest. We rearrange A and L
so that the terms related to p appear in the left upper corner. Then similarly to
the previous case we obtain

2G, = ! Le—n)(Le-n ' (3.6)
? 7 np(p—1)p% \ 62 62 ' '

As in —2G, las for —ZGp becomes the normalized vector of e/6% — h.
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When both parameters ¢ and p are of interest, we get Gg,p = AlTI"JI‘]lAl,
where A and Lj; are defined in proof of Theorem 1. It can be rewritten as

26, , = —hh' + ! e _n) (2 hT
7 np np(p — 1)p? \ 6?2 52° '

In this case a closed form of 1,,,, is not available.
4. Influence on a Test of Fitting the Equicorrelation Model
The test of the hypothesis
Hy: % =o*{(1-p)I, + plplf}
is usually performed by the likelihood ratio statistic given by

_ S|
T=emd— 0+ -1}

Then )
T*:—{n—l— plp+1)°(2p = 3) }mT (4.1)
6(p-1)(P*+p—4)

is approximately distributed as a chi-squared distribution with {p(p + 1)/2 — 2}
degrees of freedom. The null hypothesis Hy would be rejected for a significantly
large value of Ty (Rencher, 1995, p.277).

To investigate the influence of observations on the likelihood ratio statistic 7',
we consider the perturbed statistic 7'(w) under the perturbation scheme (3.1).
Differentiating L(u, o, p|w) with respect to each parameter yields

5%(w) = tr(S(w)/p.
pw) = = S i),

plp - 1)6%(w) <

where s;;(w) is the (i,5)!" element of S(w) and

S(W) = Zwu(xu - i‘(w))(xu - l:"(w))Ta
u=1

n n
a(w) = Zwuxu/zwu-
u=1 u=1

Since the denominator of T is the determinant of 33, the perturbed statistic 7' (w)
becomes [S(w)|/|E(w)|, where 3}(w) = 62(w)[{1 — p(w) L, + ﬁ(w)lplg]. Thus
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we have a surface (w’,T(w)) from which an influence measure can be obtained
(Lawrance, 1988). In this case the first derivative at w = 1, does not vanish
and thus provides valuable information about the local behaviour of T'(w). Note
that for the likelihood displacement described in Section 3, the first derivative
becomes zero.

First, we obtain the first order derivative of S(w) with respect to w, evaluated
at w=1, as Sy = (X, — X)(xy — %) /n. Since

0 4 0
secls(wl = 5w (tafS(w) ™ 50-s(w)])
we have 5 .
B, |S(w)]‘w:1n = E'SKxu -x)'s }(x, — ).

Second, we will derive the first order derivatives of the perturbed estimators
6?(w) and p(w). By the chain rule of differentiation (Eq. (14) of Cook, 1986),
from the proof of Theorem 1 we obtain

96 (w) 0p(w) o
( ow ,w:ln’ Tow ’w=1,,> = —(Li' AT

_ 511; [glge (1—ﬁ)({];j1()pﬁ— 1)p} (%e_hﬂ :

We can see that the normalized vectors of ¢ and p are the same as the eigenvector

(6,0)

corresponding to the largest eigenvalue of ~2G, and —ZGp, respectively. When
the parameter of interest is a scalar, the likelihood displacement approach and
the first order derivative of the perturbed estimator provide the same influence
information.

Similarly to the first order derivative of |S(w)|, a little algebra gives

0

Owy,

B = LBl - 075 - %)

w=1,

Therefore we obtain the first order derivative of T(w) with respect to w, evalu-
ated at w =1, as

T, = %(xu —x)T (s—1 - 2“1) (X — X). (4.2)

A large absolute value of T}, indicates that x,, is influential in testing Hy.
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5. A Numerical Example

In this section, we consider the cost data which consists of 36 measurements
on the per-mile cost of three variables: fuel, repair and capital. This data set
is taken from Johnson and Wichern (1992, p.276). When the covariance matrix
does not have any structure, Bacon-Shone and Fung (1987) analyzed the data set
and concluded that observations 9 and 21 are possible outliers.

First we will check whether this data set follows the equicorrelation model
using the test statistic T, in (4.1). The hypothesis that the data set follows the
equicorrelation model would be rejected for a significantly large value of T',. For
the cost data, the value of T, is 9.11 and the p-value is 0.058. Thus we would not
reject the assumption of equicorrelation model at any significance level less than
0.058.

Next the results by the local influence method discussed in Section 3 are

summarized in Figure 5.1. The y-axis in Figure 5.1 indicates the element of
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l;mqer corresponding to each case. When all parameters are of interest, Figure
5.1 (a) shows that observation 9 is most influential and that observations 21 is
a little influential. When o or p is of interest, Figure 5.1 (b) and (c) show that
observations 9 and 21 are most influential in both figures. When both ¢ and p
are of interest, Figure 5.1 (d) shows that the result is similar to that in Figure
5.1 (a).

Finally the index plot of the first order derivatives in (4.2) for the perturbed
test statistic T'(w) (or T,(w)), which is depicted in Figure 5.2, shows that only
observation 9 is most influential on the test statistic. This result is supported
by the case deletions of the test statistic T, summarized in Table 5.1. Numbers
in Table 5.1 are arranged in decreasing order of |Ty| or |T(,) — Ti|, where Ty,
denotes the test statistic T, after deleting observation u. Table 5.1 shows that
the change in the value of the test statistic 7, due to single case deletions has its
maximum value for the deletion of observation 9 and the next for the deletion
of observation 20. However, its magnitude due to deletion of observation 20
is relatively small to that of observation 9. Furthermore after the deletion of
observation 9, the p-value for the test statistic based on the remaining sample
becomes 0.80 and thus the hypothesis that the data set follows the equicorrelation
model would not be rejected at any reasonable significance level, whereas for the
deletion of observation 20 the p-value is 0.023. It indicates that observation 9 has
a large influence on the test but others do not.

0.05

005 00
L

0.10

0.15

FIGURE 5.2 A local influence measure for test statistic of equicorrelation model
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TABLE 5.1 Comparison of T, and case deletion result for T.

u Tu u T,.(u) - T,.
9 | —0.200 9 —7.453
20 0.044 || 20 2.160
27 0.030 | 27 1.218
21 | —-0.025 || 21 —1.058

This example shows that the local influence method provides useful informa-
tion about the influence of observations and that it can be a useful diagnostic

tool.
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