The Effects of Levan and Inulin on the Growth of Lactic Acid-Producing Bacteria and Intestinal Conditions in Rats

식이 레반과 이눌린이 흰쥐의 장내 유산균 성장 및 장내환경에 미치는 영향

  • 장기효 (경희대학교 동서의학대학원 임상영양학전공, 경희대학교 임상영양연구소) ;
  • 강순아 (경희대학교 동서의학대학원 임상영양학전공, 경희대학교 임상영양연구소) ;
  • 조윤희 (경희대학교 동서의학대학원 임상영양학전공, 경희대학교 임상영양연구소) ;
  • 김윤영 (경희대학교 동서의학대학원 임상영양학전공) ;
  • 이윤정 (경희대학교 동서의학대학원 임상영양학전공) ;
  • 홍경희 (경희대학교 동서의학대학원 임상영양학전공) ;
  • 장은경 (㈜리얼바이오텍) ;
  • 김철호 (㈜리얼바이오텍, 경희대학교 임상영양연구소) ;
  • 조여원 (경희대학교 동서의학대학원 임상영양학전공, 경희대학교 임상영양연구소)
  • Published : 2002.11.01

Abstract

In nature, two different types of fructose polymers (fructan) are generally found in dietary fibers; these are the fructose homopolymers levan, which is of high molecular weight and is $\beta$-(2,6)-linked, and inulin, which is of low molecular weight and is $\beta$-(2,1)-linked. The effects of levan and inulin on the intestinal physiology of rats were compared. Sprague Dawley rats were fed one of three diets for 3 weeks: a control diet, a basal diet containing 7% of levan, and a basal diet containing 7% of inulin. Cecal enlargement, together with the lowering of cecal pH, occurred in rats fed on the levan and inulin diets (p < 0.05). The levan and inulin diets resulted in a two-fold increase in the amount of short-chain fatty acids in the cecum, when compared to the control diet. The number of total microbes and of lactic acid-producing bacteria in the feces were higher in rats fed the fructan diets than those in rats fed control diet (p < 0.05). The levan diet also significantly increased the cecal $\alpha$-galactosidase activity by 3.8-fold, when compared to the control diet, indicating that levan stimulated the growth of Bifidobacteria in the cecum. These results show that the intake of levan and inulin stimulated the growth of lactic acid-producing bacteria in the cecum and thereby improved intestinal conditions in rats. (Korean J Nutrition 35(9) : 912~918,2002)

Keywords

References

  1. Bifidobacteria Microflora v.1 Recent trends in Research on Intestinal flora Mitsuoka T. https://doi.org/10.12938/bifidus1982.1.1_3
  2. Nutr Rev v.50 Intestinal flora and aging Mitsuoka T. https://doi.org/10.1111/j.1753-4887.1992.tb02499.x
  3. Bifidobacteria Microflora v.1 Search for sugar sources for selective in crease of Bifidobacteria Yazawa K;Tamura Z. https://doi.org/10.12938/bifidus1982.1.1_39
  4. Lancet v.1 Bacteria and etiology of cancer fo the large bowel Hill MJ;Drasar B S;Aries V;Crowther J;Hawkesworth G;Williams REO. https://doi.org/10.1016/S0140-6736(02)95563-7
  5. Yakhak Hoeji v.39 Inhibition of intestinal bacterial enzyme by lactic acid bacteria Kim DH;Han MJ.
  6. Bull Exptl Biol Med v.84 Antitumor action of glycopeptides from the wall of Lactobacillus bulgaricus Bogdanov IV;Velichkov VF;Gurvich AL.
  7. Physiol Rev v.81 Short-chain fatty acids and human colonic unction : roles of resistant starch and nonstarch polysaccharides Topping D;clifton PM.
  8. Br J Nutr v.81 Functional food properties of non-digestible oligosaccharides: a consensus report form the ENDO project(DGXⅡ AIRⅡ-CT94-1095) Loo JV;Cummings J;Delzenne N;Englyst H;Frank A;Hopkins M;Kok N;Macfalane G;Newton D;Quigley M;Roberfroid M;van Vliet T;van den Heuvel E. https://doi.org/10.1017/S0007114599000252
  9. Bifidobact Microflora v.9 Effect of xylooligosaccharide on the growth of Bifidobacteria Okazaki M;FujiKawa S;Matsumoto N. https://doi.org/10.12938/bifidus1982.9.2_77
  10. Bifidobact Microflora v.10 Proliferation of Bifidobacteria by oligo- saccharides and their useful effect on human health Hidaka H;Tashiro Y;Eida T. https://doi.org/10.12938/bifidus1982.10.1_65
  11. Adv Appl Microbiol v.35 Microbial levan Han YW. https://doi.org/10.1016/S0065-2164(08)70244-2
  12. Annu Rev Nutr v.18 Dietary fructans Roverfroid MB;Delzenne NM. https://doi.org/10.1146/annurev.nutr.18.1.117
  13. L.De. Biopolymers v.6 Polysaccharides Ⅱ. Inulin. Franck A, Leenheer;S.De Baets EJ(ed.);Vandamme A. Steinbuchel(ed.)
  14. Biopolymers v.5 Polysaccharides I. Levan Rhee SK;Song KB;Kim CH;Park BS;Jang EK;Jang KH;S. De baets EJ. Vandamme(ed.);A. Steinbuchel(ed.) https://doi.org/10.1002/bip.1967.360050404
  15. Nutr Res v.18 Comparison of the nutritional effects of fructooligosaccharides of different sugar chain length in rats Ohta A;Ohtsuki M;Baba S;Hirayama M;Adachi T. https://doi.org/10.1016/S0271-5317(97)00205-4
  16. J Nutr Biochem v.10 In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats Yamamoto Y;Takahashi Y;Kawano M;Iizuka M;matsumoto T;Saeki S;Yamaguchi H. https://doi.org/10.1016/S0955-2863(98)00077-1
  17. J Kor Soc Food Sci Nutr v.29 Physiological effects of levan-oligosaccharide on growth of intestinal microflora Kang SK;Park SJ;Lee JD;Lee TH.
  18. Syst Appl Microbiol v.24 In vitro study of probiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis Bello FD;Walter J;Hertel C;Hammes WP. https://doi.org/10.1078/0723-2020-00033
  19. FEMS Microbiol Lett v.182 Metabolization of β-(2,6)-linked fructose- oligosaccharides by different Bifidobacteria Marx SP;Winkler S;Hartmeier W.
  20. Int Dairy J v.11 Homopolysaccharides from lactic acid bacteria Monsna P;Bozonnet S;Albenne C;Joucla G. https://doi.org/10.1016/S0958-6946(01)00113-3
  21. A color atlas of anaerobic bacteria Mitsuoka TA.
  22. Agr Biol Chem v.50 p-Nitrophenyl glycoside-hydrolyzing activity in Bifidobacteria and characterization of D- galactosidase of Bifidobacterium longum 401 Tochikura T;Sakai K;Fujiyoshi T;Tachiki T;Kumagai H. https://doi.org/10.1271/bbb1961.50.2279
  23. Biotechnol Lett v.23 Comparison of characteristics of levan produced by different preparations of levansucrase form Zymomonas mobilis Jang KH;Song KB;Kim CH;Chung BH;Kang SA;Chun UH;Choue RW;Rhee SK. https://doi.org/10.1023/A:1005641220946
  24. Science and Technology of Fructans. The origin, distribution, and evolutaonary significance of fructans Hendry GAF;Wallace RK.;M Suzuki(ed.);Nj Chatterton(ed.)
  25. J Nutr v.127 Selected indigestible oliosaccharides affect large bowel mass, cecal and fecal shortchain fatty acids, pH and microflora in rats Campbell JM;Fahey Jr. GC ;Wolf BW.
  26. Nutr Res v.22 Dietary curdlan suppresses dimethylhydrazine-induced aberrant crypt foci formation in Sprague-Dawley rat Shimizu J;Kudoh K;Wada M;Takita T;Innami S;Maekawa A;Tadokoro T. https://doi.org/10.1016/S0271-5317(02)00388-3
  27. J Clin biochem Nutr v.5 Utilisation of U-14C fructo-oligosaccharides in man as energy resources Hosoya N;Dhorranintra B;Hidaka H.
  28. Crit Rev Food Sci Nutr v.33 Dietary fiber, inulin and oligofructose: a review comparing their physiological effects Roberfroid M. https://doi.org/10.1080/10408399309527616
  29. J Kor Agric Chem Soc v.36 no.3 Detection of Bifidobacteria by galactosidase activity Min HK;Lee SK;Kang KH.
  30. J Appl Bacteriol v.68 Detection of Bifidobacterium species by enzymatic methods Chevalier P;Roy D;Ward P. https://doi.org/10.1111/j.1365-2672.1990.tb05227.x
  31. Kor J Nutr v.34 no.1 Effects of soyoligosaccharides on blood glucose and lipid metabolism in streptozotocin-induced diabetic rats Kim MH;Kim HY;Kim WK;Kim JY;Kim SH.
  32. J Nutr Sci Vitaminol v.42 Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient anemic rats Ohta A;Ohtsuki M;Baba S;Takizawa T;adachi T;Kimura S.
  33. J Nutr v.128 Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats Ohta A;Motohashi Y;Ohtsuki M;Hirayama M;Adachi T;Sakuma K.
  34. J Nutr v.121 High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin Levrat MA;Rmsy C;Demign C.
  35. Biosci biotechnol Biochem v.65 no.8 Role of activity of gastrointestinal microflora in absorption of calcium and magnesium in rats fed bata 1,4-linked galacto- oligosaccharides Chonan O;Takahashi R;Watanuki M. https://doi.org/10.1271/bbb.65.1872