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FUZZY INTERIOR SPACES
A. A. RAMADAN, M. A. ABDEL-SATTAR, AND YONG CHAN KM

ABSTRACT. In this paper, we study some properties of fuzzy in-
terior spaces. Also, we investigate the relations between fuzzy in-
terior spaces and fuzzy topological spaces. In particular, we prove
the existence of product fuzzy topological spaces and product fuzzy
interior spaces. We investigate the relations between them.

1. Introduction

The concept of a fuzzy topology was first defined in 1968 by Chang
(1] and later redefined in somewhat different way by Lowen [13] and by
Hutton [9]. Sostak [16] introduced a new definition of fuzzy topology as
the concept of the degree of the openness of a fuzzy set. Chattopadhyay
et al. [4] introduced the fuzzy closure spaces in a Sostak’s sense. Hohle
et al. |7, 8] substituted a lattice L ( GL-monoid, cqm-lattice) for the
unit interval or the two-point lattice 2 = {0, 1} in the definitions of fuzzy
topologies and fuzzy closure spaces in (1, 4, 11, 13, 16].

In this paper, we introduced the notion of fuzzy interior spaces in a
sense |7, 8] and we study some properties of them. We investigate the
relations between fuzzy interior spaces and fuzzy topological spaces. In
particular, we prove the existence of product fuzzy topological spaces
and product fuzzy interior spaces. We investigate the relations between
them.

2. Preliminaries

In this paper, let X be a nonempty set. Let L = (L,<,V,A) be a
completely distributive lattice with the least element 0 and the greatest
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element 1 in L (ref. [12]). For a € L, a(z) = « for each z € X.

DEFINITION 2.1. [7, 8, 18]. A triple (L, <, ®) is called a strictly two-
sided, commutative quantale lattice (scq-lattice, for short) iff it satisfies
the following properties:

(L1) (L,®) is a commutative semigroup.

(L2) z=2®]1, for each z € L.

(L3) ® is distributive over arbitrary joins, i.e.,

(\/ i) ®s = \/(Ti®3)~

el el

A scg-lattice (L, <, ®) is called idempotent if t®x = z foreach = € L.

REMARK 2.2 {7, 8, 18]. (1) Every completely distributive lattice
(L, <,A) coincided with ® = A is a scq-lattice. In particular, the unit
interval ([0, 1], <,A) is a scg-lattice.

(2) Every continuous t-norm ([0,1], <,¢) coincided with ® =t is a
scg-lattice.

(3) Let (L, <, ®) be a scq-lattice. For each z,y € L, we define

a:——>y=\/{z€L|a:®z§y}.
Then it satisfies Galois correspondence, i.e.
(z®y)<ziffz < (y — 2).

(4) Let (L, <,®) be a scq-lattice. If z <y for each z,y € L, by (L3)
of Definition 2.1, then 2 ® 2 < y ® 2.

In a scqg-lattice L, z* = (z — 0) is called complement of z € L.

DEFINITION 2.3. {7, 8, 18]. A scq-lattice (L, <,®) is called a com-
plete MV-algebra iff it satisfies the following property:
(MV) (z—y) 2y=zVy, Vz,y€ L.

LEMMA 2.4 [7, 8, 18|. Let L be a complete MV-algebra. For each
z,y,z € L, {y; | i € '} C L, we have the following properties.

(1) (") ==.

(2)zAhy=zQ(x—1y).

(3) z <y iffz* > y*.
(4) Iy < 2, (z > 9) < (& — 2).
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z <y iffx* > y*.

(5)

(6)

() z— VzEF Yi = Vier(z = 4:)-
(8) r— /\151“ Yi = /\zeF("L‘ - yz‘)-
(9) (VzEI‘ Yi) =z = /\ier(yi — ).
(10
(11

) Niervi m = Vler(yz - ).
) If L is idempotent, then Ay =2 Q@ y.

All algebraic operations on L can be extended pointwise to the set
LX as follows: for all z € X,

(1) f < giff f(z) < g(x);

(2) (f ® 9)(z) = f(z) ® g(z);

(3) (f = 9)(z) = f(=z) — g().

We always assume that (L, <, ®) is a scg-lattice if we do not suggest
the condition.

DEFINITION 2.5 [7, 8, 16]. A map 7 : LX — L is called a fuzzy
topology on X if it satisfies the following conditions:

(01) 7()=7(1) =1,

(02) T(p1 ® p2) > T (1) ® 7 (o), for all py, pp € L,

(03) T(Viep i) = Niea T (1), for any {ui}iea C LX.
The pair (X,7T) is called a fuzzy topological space.

Let 77 and 75 be fuzzy topologies on X. We say that 7; is finer than
7> (73 is coarser than T7), denoted by T < 71, if To(A) < Tq(A) for all
A€ LX. Let (X,7;) and (Y,73) be fuzzy topological spaces. A map
f: (X, T1) — (Y,T3) is called fuzzy continuous if To(A\) < T1(F~1(N)),
for all A € LY.

DEFINITION 2.6 [7]. A map I : LX x L — L* is called a fuzzy inte-
rior operator on X iff I satisfies the following conditions:

(1) I(1,7) =1, Vr € L.

(I2) I\ ) <A\ Vre L.

(I3) If A < pand r < s, then I(A,s) < I(u,r).

(14) IA® p,m @) 2 I(A, 1) @ I(1, 5).

(I5) I(A,0) = A

The pair (X, I) is called a fuzzy interior space.

A fuzzy interior space (X, I) is called topological if

II7),r) =I(\7), YA€ L¥, re L.
A fuzzy interior space (X, I) is called weakly stratified if
I(,7) >, YaeLX Vr,aclL.
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Let I, and I, be fuzzy interior operators on X. We say that I is finer
than I (I3 is coarser than Ih), denoted by I> < Iy, if I(\,7) < 1 (A7)
forall \e LX,r € L.

THEOREM 2.7 [7]. Let (X,7T) be a fuzzy topological space. For each
r € L,\ € LY, we define a map I : LX x L — LX as follows:

IrAr) =\[{p e LX | n <A T(n) > r}.

Then Iy satisfies the following properties:
(1) Ir(1,r) =1,Vr € L.
2) I-(A\,r) <A\ Vre L.
3) IfFX<pandr <s, then IT(\ s) < IT(p,7).
) Ir(A@p,r®s) > Ir(A\, 1) Q IT(1, 8).
5) I(X,0) = A.
6) IT(IT()\ T’) ) = IT(/\,T).
) If Iy (A, s) = p, Vs € K # 0, then IT(\,\V K) =

The following theorem is the similar result of Theorem 8.1.2 in [7].

THEOREM 2.8 [7]. Let a map I : LX x L — LX be a fuzzy interior
operator. Define a map T; : LX — L by

= \/{'r eL|X<I\T))

Then it satisfies the following properties.

(1) 77 is a fuzzy topology on X.

(2} If T is a fuzzy topology on X, then T;, =T.

(3) I, = I iff I is topological and I(\,s) = p,Vs € K # @ implies
IAVK) =

3. Fuzzy topological spaces and fuzzy interior spaces

DEFINITION 3.1. A map B: LX — L is called a fuzzy base on X if it
satisfies the following conditions:

(B1) B(1) =B(0) =1

(B2) B(pu1 ® p2) > B(u1) ® B(ps), for all p1, pus € LX.

A fuzzy base B always generates a fuzzy topology 7z on X in the
following sense.
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THEOREM 3.2. Let B be a fuzzy base on X. Define a map Tg : LX —

L as follows:
Te(w) = \{ N\ Bui) | n="\/ n;}
JEA jEA

Then T is the coarsest fuzzy topology on X such that Tg(\) > B(A),
for all A € LX.

Proof. (O1) It is trivial from the definition of 75.

(O2) For all families {A; | A = V; 4 Aj} and {px | o = Vier pi}s
there exists a family {\; ® p} such that, by Definition 2.1 (L3),

rop=(\/ eV m= V Oom).

JEA keA JEAkET
It implies
TsAew > N\ Bl u)

JEA LET

> A (B(Aj) ® B(uk)) ( by Definition 3.1 (B2))
JEALET

> ( /\ B()\j)> ® ( /\ B(,uk)> ( by Remark 2.2(4)).

JEA kEA

By Definition 2.1 (L3), 7g(A ®@ ) > Tg(A) ® ().
(03) Let J; be the collection of all index sets K; such that {);, €

LX | X = Vier, Mo} with A = Vier X = Vier Viek, Aiv- For each
i € T and each ¢ € [L;crJ; with ¢¥(i) = K;, we have

(4) s = A (A BOw)).
el keK;
Put a; yi) = Arek, B(Xii). From (4),
T(A) = \/ (/\ @i (i)
Ye€llijerJ; i€
(Since L is a completely distributive lattice)

=ACV aim)

i€l M;eJ;

=A(V CA Bxw.)

el M;eT; meM;

= A\ Ts(\).

el
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Thus 73 is a fuzzy topology on X.
If7 > B, for every A =V,5 A,

TN > AN TO) > A\ BOy).

JEA JEA

Thus 7 > 75. O

From Theorem 3.2, we easily prove the following lemma.

LEMMA 3.3. Let 7 be a fuzzy topology on X and B a fuzzy base
onY. Let f: X —Y be amap. Then f : (X,T) — (Y,T) is fuzzy
continuous iff T(f~1(\)) > B()), for each X € LY.

DEFINITION 3.4. Let (X, ) and (Y, I5) be two fuzzy interior spaces.
A map f:(X,I;) — (Y, L) is called

(1) a fuzzy I-map if f~Y(I(\, 7)) < Li(f~Y(\),r),Vr € L,¥A € LY.

(2) a fuzzy I-open map if f(I1(\,7)) < L{(f(A\),7)),Vr € L,VXA € LX.

DEFINITION 3.5. Let (X,7;) and (Y, 73) be fuzzy topological spaces.
A map f: (X,71) — (Y,72) is fuzzy open if T1(A) < To(f(N)),VA €
Lx.

THEOREM 3.6. Let (X,7;), (Y, T2) be fuzzy topological spaces. Then:

(1) f: (X, Th) — (Y, T2) is fuzzy continuous iff f : (X,I1,) — (Y, I1,)
is a fuzzy I-map.

@) f 1 (X, T3) — (Y, Ta) is fuzsy open iff f : (X,Iz,) — (Y, Iz,) is
fuzzy I-open.

Proof. (1) Let f be fuzzy continuous. For all p € LY ,r € L,

F L) = (Ve e LY 1 p < u, Talp) > 1))
<IN e LY 1 7o) < 7 W), T2 p) > 7))
=V{f ) e LX | £7p) < F7Hw). T(F 74 (0) 2 7}
<\{relLX|v<fHuw nv)2r}
= I, (f 7' (1), 7).

Conversely, since y < I, (u.7) implies f~(u) < Iz (f~"(1),7), by
Theorem 2.8 , it is easily proved.
(2) It is similarly proved as in (1). O
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LEMMA 3.7. Let (L,<,®) be an MV-algebra. Let (X,T) be a fuzzy
topological space. For each r € L, ) € LX, we define a fuzzy closure
operator Cr : LX x L — L% as follows:

crinr) = A{peL¥ [A<p,T(p—0) 27}

Then
Cr(A—0,r)=Ir(\r) —0.

Proof. Since \/;cpai — 0= A;cr(a; — 0) and (@ — 0) — 0 = a from
Lemma 2.4(1,9), we have

Ir,r) = 0=\/{u | n <A T(w) >r} =0
= Np—=0lp< AT 27}
“Ar—=0l(t=02(0-0,T((1 -0 ~0) 27}

= NPl A—=0)<p,T(p—0)2r}
ZCT()\——a_Q,T‘).
a

THEOREM 3.8. Let (L,<,®) be an MV-algebra, (X,T1) and (Y, T2)
fuzzy topological spaces. Then the following statement are equivalent:

(1) f:(X,T7) — (Y, Tp) is fuzzy continuous.

(2) f U7, (1, 7)) < I (f Y (w),r), for each p € LY and r € L.

(3) f(Cr,(\ 7)) < Cr, (f(N),7), for each A € L* and T € L.

Proof. (1) < (2) It is proved in Theorem 3.6(1).
(2)=(3) From Lemma 3.7, we have

7 (Cnr.m)
= 77 (15 (f () = 0,7) —0) (by Lemma 3.7)
= 17 (In( )0
> 15, (7)) = 0),7) = 0 (by (2) and Lemma 2.4(5))
=I5, () - 0 r)

(

ZIji(A—’Q,T) _’.Q
=Cq’l(>\,'r’).
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It implies
Cr(fN,7) 2 £(F7(Cn(FN)m))
> f(Cr (A7),
(3)=-(2) Similar to (2)=(3). 0

ExaMPLE 3.9. Let (L,<,®) = ([0,1],<,A) be given where [0, 1] is
the unit interval. For p ¢ {1,0}, we define fuzzy interior operators
I, I, : [0,1)% x [0,1] — [0,1]% as follows:

(1 ifA=1, vVrel0,1],
fl£A>p, 0<r<i

Il()\,r)=<#?_7é > r<3

A ifr=0,

L 0 otherwise.

(1 ifA=1, Vre|0,1],

poifl#A>p, 0<r <y,
L\ r) =
2N =9 )\ =,

\ 0 otherwise.

Then the identity map idx : (X,I;) — (X, I2) is not a fuzzy I-map

because
1

1
L 2(,“72)>II(H,2) 0

On the other hand, from Theorem 2.8, we can obtain fuzzy topologies
T1, = T1, - [0,1]X — [0,1] as follows:

1 ifA=0o0rl}l,
0 otherwise.

Thus, the identity map idx : (X,7;,) — (X,71,) is a fuzzy continuous
map. From above facts, the identity map idx : (X, I2) — (X, I;) is not
a fuzzy I-open map and the identity map idx : (X,7T;,) — (X,71,) is a
fuzzy open map.
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THEOREM 3.10. Let {(X;,7;) | i € T'} be a family of fuzzy topolog-
ical spaces, X a set and for each i € I', f; : X — X; a map. Define a
map B:L* — Lon X by

B(u) = \{®Fo1 Ti; (i) | 1= @0y £ (vr))}

where \/ is taken over all finite subsets K = {ky,...,k,} CT.

Then:

(1) B is a fuzzy base on X.

(2) The fuzzy topology T generated by B is the coarsest fuzzy topol-
ogy on X for which all f;, i € I', are fuzzy continuous maps.

(3) Amap f: (Y, T'") — (X, 7Tp) is fuzzy continuous iff for eachi € T,
fiof (Y, T') — (Xi,T;) is a fuzzy continuous map.

Proof. (1) Since A = f;1()) for each A € {0,1}, B(1) = B(0) = 1.
For all finite subsets K = {k,...,k,} and J = {j1,...,j4} of T such
that

A= S O, =8 £ (1),
we have
rou= (@ fi () @ (@ £, w)-
Furthermore, we have for each k€ KN J,
T HO) ® £ () = fi (0 @ ).
Put A ® pt = ®@m,exus frn; (Pm,;) where

- it mie K —(KnJ)
Pm; =\ Mm; if mieJ—(KNJ)
)\mi®l1'7n,- if m; e KNJ.

We have

BA®p) > @jexusZi(ps)
> (@0, T () @ (8L, T, ()

By Definition 2.1(L3), B(A ® u) > B(\) ® B(u).
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(2) For each \; € LY, one family {f;"'(\;)} and i € T, we have
To(£7' () = B(£7' ) = Th).
Thus, for each i € T, f;: (X,75) — (X;,T;) is fuzzy continuous. Let
Fi i (X, 7% — (X;,7;) be fuzzy continuous, that is, for each i € I" and

Ai € LX, TO(F7H (M) = Ti(\). For all finite subsets K = {ki, ..., k,}
of " such that A = ®f:1f,;1()\k1), we have

700 > &0, T (i Ow) )
2 (Epzp:l?’;fi (Akz)

It implies 7°(\) > B(\) for each A € LX. By Theorem 3.2, 7° > 7.
(3)(=) Let f: (Y,7T") — (X, 75) be fuzzy continuous. For each i € T
and \; € LX¢, we have

T'((fe )7 00) = T (5107 00) 2 Ta(£7100) 2 TA):

Hence fio f: (Y, T') — (X;,7;) is fuzzy continuous.
(<) For all finite subsets K = {ki,...,k,} of I such that

A=l (),
since fx, o f : (Y, T") — (Xx,,Tr,) is fuzzy continuous,
(B) T (U 0n)) 2 T )
Hence we have
T ) =T (7180 £ On)
=7'(&ly 17U Ow)

(£ Ow)
> &0, %, () (b (B))

It implies 7'(f~}()\)) > B(A) for all A € LX. By Lemma 3.3, f :
(Y, T') — (X, 7Tg) is fuzzy continuous. O

From Theorem 3.10, we can define a product fuzzy topology.
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DerFINITION 3.11. Let {(X;,7;)}icr be a family of fuzzy topological
spaces, X = Il;erX; a product set and foreach i € T, m; : X — X, a
projection map. The product fuzzy topology is the coarsest fuzzy topology
on X for which all #;, ¢ € I, are fuzzy continuous maps.

THEOREM 3.12. Let (L, <,®) be an idempotent scq-lattice, {(X;, I,)|
i € I'} a family of fuzzy interior spaces and f; : X — X; a map. Define
amap I* : LX x L — LX by

ron= Vo ek £ (T wn) }

®f:1fi_,\.1()‘ik )<A

for all finite subsets K = {i1,...,i,} of . Then I* is the coarsest fuzzy
interior operator on X for which each i € T, f;: X — X, is a fuzzy
I-map.

Proof. (I1) Since I*(1,7r) > fi_1 (I(l,’l‘)) =1, we have I*(1,r) = 1.
(I2) For all finite subsets K = {iy,...,i,} of ', we have

roan= Vo {eia £ (T0wn)

®Ir::1fi_,:.l (Ai <A

< Vo {em o)
®p f i )SA
<A

(I3) and (I5) are easily proved from the definition of I*.
(I4) For all finite subsets K = {ki,....,kp} and J = {j1,...,5g} of T
such that
®’Ii?=1fk_,-1()\ki) <A ®g:l ]:l(yﬂ'i) 7

we have
(& £t 0w)) © (8L, £ ) < (e w).
Furthermore, we have for each k € KN J,
£ Ow) @ £t (k) = £ O ® o),

£ (1) @ £ (Tl ) < 57 (T @ s @9))
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Put M = KUJ = {my,...,m,} with

Am, ®1 if mje K—(KnJ)
Pm; = Hm, @1 if mieJ—(KnJ)
)\m,, & tm, if mje KNJ.

If m;cK—(KnJ),

Fnt (Tone 7))
= fo! (I Oi)) ©1

= it (s o)) @ £} (I, (1,9))
< St (Tn O, ® 1,7 ®35))

= fon. (I

) (Iml.

Similarly, if m; € J — (KN J),

pmiy"' ® 8))

frﬁll (Imi (ﬂmus)) < fn_hl (Imi(pmia"' ® 3))

Hence
( \/ { ®7-1 f;;l(fki()\ki,r))})
®f:1fk.:_1 ()\ki)S)\
® ( \/ { ®f_, J:l (Iji(l‘l’ji7s)) })
®F_1f5, (n3,)<m
< V { o1 £7} (Il @ 9)) }
®::1f;l: (pmi)f)\®u
<O ures)
Thus,

Ir'Ar) @I (p,s) S I"(A® u, T ® s).

For each \; € L*X¢, one family {f;*(\;)} and i € ', we have

(7)) > f7 T, 7).
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Thus, each i € T, f; : (X, I*) — (X, [;) is a fuzzy I-map.
Let f; : (X,I°) — (X;, I;) is a fuzzy I-map for each i € T'. Since for
each i € T and \; € LX,
(7 a)r) 2 7 T ),
for all finite subsets K = {iy,...,i,} of I, we have

roan= Vo {en £t (50un)}

1 fiy i )SA

< \/ {®Z:1I0(fi;1()\ik)’r)}

®p_ 1 fi (A )SA

\/ IO<®Z=1 fizl(/\ik),@)ﬁzlr) (by (14))

®p_1 fi i )SA

=V (@R £ ) (since @f_yr =)
®p1fi (i )<A

< I\ 7).

IA

a

From Theorem 3.12, we can define product fuzzy interior spaces for
an idempotent scqg-lattice (L, <, ®).

DEFINITION 3.13. Let {(X;, ;) | i € T'} be a family of fuzzy interior
spaces, X = Il;erX; a product set and foreach ¢ € I', m; : X — X, a
projection map. The product fuzzy interior operator is the coarsest fuzzy
interior operator on X for which all 7;,: € I, are fuzzy I-maps.

THEOREM 3.14. Let (L, <,®) be an idempotent scq-lattice, {(X;, T;)|
i € I'} a family of fuzzy topological spaces, X a set and for each ¢ € T,
fi: X — X; amap. Define the map I : LX x L — LX on X by

=\ {57 (I, ) }
®p_ fi (i )SA
for all finite subsets K = {iy,...,i,} of I'. Then we have
Ts =11,

where the fuzzy topology 77 is induced by I and 7g is defined by The-
orem 3.10.
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Proof. Suppose there exists A € LX such that 7z(A\) # 7;()\). By
the definition of 7; from Theorem 2.8, there exists » € L such that
I(\,r) = X and 7g(A) 2 r. It implies

A=1I(\r)

=V A{er it (I 0a0n) )

-1
®,T::1 i ()\zk)S/\

for all finite subsets K = {t1,...,i,} of I'. From Theorem 2.7(6), since
I, (Miy,7) = I7,, (I7;, (i, 7),7), using the fact 7; = 7p, from Theorem
2.8, we have

T (Ir, (o)) 2 7

Put py = fizl (ITi,c ()\ik,r)). From Theorem 3.10, we have

B®-ame) 2 84T, (I, (hii)
> Rp_T

=7

Put pux = ®}_;uk. For all finite sets {K C I | ®Z:1fi;1(Aik) < A} by
the definition of 75 in Theorem 3.10, we have

T5(A) = Ts( \/ B) 2 /\ B(ux) 2.

KcCr Kcr

It is a contradiction. Therefore 7g(u) > 77(u) for all u € LX.

We show that Tg(u) < 77(u) for every u € LX, equivalently, the
identity map idx : (X,77) — (X, Tg) is fuzzy continuous. From The-
orem 3.10 (3), we only show that f; oidx : (X,77) — (X, 7;) is fuzzy
continuous. If 7;(v;) > r for r € L, then, by Theorem 2.7, we have

It (vi,7) = v;.
From the definition of I, it follows that
I W), r) 2 £ v ) = £7Hw).

By Theorem 2.8, 7;(f; ' (v;)) > r. Hence T;(v;) < T1(f7 ' (v;)), for all
v € I, O
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THEOREM 3.15. Let (L, <,®) be an idempotent scq-lattice, {(X;, I;)]
i € T} a family of fuzzy interior spaces, f; : X — X; a map and I* the
fuzzy interior operator as in Theorem 3.10, then:

(1) If there exists ¢ € I such that I; is weakly stratified, then I* is
also weakly stratified on X.

(2) If {(X;, ;) }ier Is a family of topological fuzzy interior spaces,
(X, I*) is a topological fuzzy interior space.

(3 Amap f:(Y,I')— (X,I") is a fuzzy I-map iff for each i € T,
fiof (Y, I') = (Xi, I,) is a fuzzy I-map.

Proof. (1) Let I; be weakly stratified on X;. Since I;{e,7) > a for
each ¢ € LX¢, r € L and f; (@) = a, we have, for each o € LX, r € L,

ren= \  {e 7 (B0wn)]
®pfi i )<a
> 7 (Iie,r)

> a.

Thus I* is also weakly stratified on X.
(2) For all finite subsets K = {41,...,4, } of I", we have

ron= Vo {er £ (L)}

I Pl O RH LN

_ \/ { 7, f;l (I,-k(lz'k (A>T, T)) }

®p_ fi (A )<A

< \/ { ®r=1 fizl(‘[ik(‘[ik()‘ik’r)7r))}

®n_ fi i iy P SI (A1)

< I*(I*(/\,T),r)

because ®Q:1fi:1()\ik) < A implies ®Z:1fi;1 (Iik(/\ik,r)) < I*(\r).
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(3) For all finite subsets K = {1,...,7,} of I, we have
o =70V {e s ()}

n -1
1 Ji )<

}
-V (e (f0wn) )
)

®p_y S (N )<A

Voo s (5 (e 0wn) )}

®p_1 S, (M)A

Vo {sar(rerioun))

®po Fi (i )<A

Vo (e ) eiar) }

®p_1fi (R )<A
=V (et ounr) )
®p_ i ()<

<IN, ).

Il

IN

IA

From Theorem 3.12, we can prove the following corollaries.

COROLLARY 3.16. Let (L,<,®) be an idempotent scg-lattice and I
a fuzzy interior operator onY. Let f : X — Y a map. We define a map
If:LX x L — L% as

Fovy =\ (Iwn).
FH <A

Then I is the coarsest fuzzy interior operator on X for which f is a
fuzzy I-map.
COROLLARY 3.17. Let (L,<,®) be an idempotent scg-lattice. Let

{I, | i € I'} be a family of fuzzy interior operators on X. We define a
map I* : L* x L — L% defined by

I*(/\,r) = \/ (Ih()‘inr)@-" ®Iin()\in77'))
Xip BXipg®.. @i, <A

for all finite subsets K = {iy,...,in} of . Then I* is the coarsest fuzzy
interior operator finer than I; for eacht € T.
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